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Appendix A

// CGTPIF Programmer's Guide

/
4

/
A.l \ Introduction
M

—CGTPIF is a controller design program which exe-

cutes interactively. Three design paths are offered:

(1) design of a Proportional-plus-Integral (PI) regulator
via linear-quadratic (LQ) methodology; (2) design of a
Command Generator Tracker, either open-loop (CGT) or
closed-loop (CGT/PI); and (3) design of a Kalman filter
(KF) . These three designs are components of a final con-
troller implemented as a Command Generator Tracker, with an
inner~loop proportional-plus-integral regulator, and a
Kalman filter for state estimation (CGT/PI/KF). For each
design path there is a corresponding set of routines to
evaluate the quality of the design achieved.

The program is written in FORTRAN IV and consists
of about 2500 lines of source code. In addition, numerous
routines are employed from a library of matrix routines
described in Reference 24. Since the resulting program is
large both in code and in memory utilization for array
storage, direct and complete loading of the program exceeds
memory limits for interactive execution on the ASD CYBER

computer system. A technique referred to as "segmentation"
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is employed to provide selective loading of routines dur-
ing execution so that memory usage remains within the
limits for interactive execution.

This guide first discusses various general aspects
of the program relevant to a programmer wishing to under-
stand the code and wishing to obtain an executable object
file. Later sections discuss the specific execution paths

and the computations performed by each routine.

A.2 Program Structure

All of CGTPIF's execution logic and computations
are embodied in a large set of routines which require no
modification in order to apply the program to various dif-
ferent specific design problems. These invariant routines
are referred to here collectively as CGTPIF SUBS. Among
these routines, a single subroutine, CGTXQ, serves as the
overall executive for program execution.

Additional routines comprising CGTPIF are the main
program routine (MAIN) and var:ious optional user-provided
routines. MAIN simply defines temporary file names, allo-
cates total array storage, then calls CGTXQ. CGTXQ then
determines all execution options and calls the appropriate
routines of CGTPIF SUBS. The optional routines are called
from within the CGTPIF SUBS routines (at the user's dis-
cretion), and if not specifically needed for the design of
interest may be omitted (i.e., the user need not provide

"dummy" subroutines). IF CGTPIF is directed by the user to

"
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call such optional routines but which the user has not pro-
vided, dummy routines within CGTPIF SUBS are called. These
dummy routines allow the call to be completed and signal
CGTPIF that functional routines do not exist in the object
file. Thus execution of the program is not affected if the
user directs execution of optional routines that he has not
implemented.

The available executable object file for CGTPIF
provides specific array allocations and can handle systems
with states and other vector variables dimensioned in the
range of 10-20, approximately (the specific dimensiongli-
ties are given in a later section). 1In many cases the
available CGTPIF will be directly appiicable to a variety
of different problems without modification. However, if
the memory allocation is to be changed and/or if any of the
optional routines are to be implemented, then these will
require compilation. The CGTPIF SUBS routines would require
no modification under these circumstances.

The general structure of CGTPIF is shown in
Figure A-1. The blocks emanating from CGTXQ comprise the
primary computational components of the program. At any
given instant during program execution, the routines
actually loaded in memory are MAIN, subroutine CGTXQ, and
the subroutines associated with a single computational
block called by CGTXQ. In addition, certain routines
utilized by several different computational blocks are

loaded in conjunction with CGTXQ.

3
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A.3 Segmentation (Ref 13)

As mentioned above, only certain routines of
CGTPIF are actually in memory at any time during execution.
This selective loading is achieved using a CYBER loader
option termed "Segmentation."

Segmentation is achieved using Job Control Language
and segmentation directives. Source code requires no modi-
fication, and is simply compiled in the usual manner but

without immediate execution. The object files for all

source code and all library routines are then manipulated
accerding to the segmentation directives to create a seg-
mented object file. This object file may then be executed
like any other executable file.

As the segmented file executes, segments of object
code are loaded and unloaded to achieve the memory-resident
program structure defined by the segmentation directives.
All loader operations are performed automatically. For the
user, execution proceeds as though the entire program were
resident at all times.

For CGTPIF, the Job Control commands and the seg-
mentation directives needed to achieve a segmented exe-
cutable object file are invariant. A listing of the job

commands is given in Appendix E. More detail on segmenta-

tion may be found in Reference 13.




A.4 Use of Library Routines

Routines described in Reference 24 are maintained
in a program library in object form. CGTPIF employs many
of the 'LIBRARY' routines in performing necessary computa-
tions.

The LIBRARY routines execute very efficiently.
Array subscripting is single-indexed to reduce the over-

head execution time incurred simply in computing array

element addresses. However, as a byproduct of this single-

! indexing technique and the array storage mechanism of

E i FORTRAN, the row dimension allocation within which arrays
are stored must be the same for all arrays used by a

library subroutine call (in some cases in which matrix
A

“ ree Am i e e A

transposes are involved, a column dimensioning constraint

is also imposed). The routines included in the CGTPIF SUBS

package accommodate these requirements on the effective row/
column array allocations in each case that LIBRARY routines
are employed.

Three named common blocks of CGTPIF are included to
effect communication with the LIBRARY routines: /MAIN1/,
/MAIN2/, and /INOU/. These provide two temporary arrays,
two parameters related to the row dimension used for array
ﬁ' | storage, and three parameters defining files to be used
for input/output (I/0). Later sections of this guide dis-

cuss these and all other common blocks in detail.




A.5 Array Storage

A significant characteristic of CGTPIF is its i

applicability to problems having a large variety of dimen- !
sionalities with system orders as great as 10 to 20. This
is achieved by efficient techniques for array storage,

adaptive addressing of individual arrays, and careful coding

to avoid generating unnecessary temporary storage areas.
The resulting code is not typical of the coding frequently
encountered in matrix routines but is not in itself
especially difficult to understand.

The basic principle in the array storage technique

is simple. A small number of one-dimensional arrays are

allocated corresponding to specific computational elements
of the program. Within each allocated vector, individual
arrays are stacked linearly according to the standard
FORTRAN convention (storage by columns). Each array :
occupies only as many storage locations as required to con-
tain all its elements, and for each a starting address in
the appropriate linear stack is computed. Any array then
can be located through its starting address in the larger
vector. Thus within a given total allocation for each com-
putational element, individual arrays of many different spe-
cific dimensions can be stored. Each array used can be
considered "full" (the "allocated" dimensions and actual
dimensions are identical).

The usual method for achieving variable array dimen-

sioning involves specific fixed dimensioning of many

7
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individual arrays. Although this corresponds more with the
ordinary conception of arrays and makes the code simple to
write, there are disadvantages. Often the overall problem
size which can be handled is smaller since all allocations
assume the maximum value of every specified dimension is
simultaneously attained. Also, problems having different
sets of dimensions inconsistent with the fixed dimensions
may cause individual array allocations to be exceeded while
other arrays have enough excess storage locations to accom-
modate the need. But that storage is not free to be por-
tioned out among the arrays suffering the short-fall and
the problem cannot be accommodated.

In CGTPIF, many of the matrix computations work
with arrays which are "in place" in the large vector
storage areas. In cases in which augmented matrices are
formed, arrays may be moved from permanent storage to
form a partition of a new matrix. Also, in using the
LIBRARY routines it is sometimes necessary to move arrays
from their full storage mode to other temporary storage of
larger row dimension. Finally, other arrays are sometimes
moved from partitions of larger arrays to permanent full
storage.

Figure A-2 illustrates several aspects of array
storage using a model of a partitioned matrix M. While it
is represented in the figure as two-dimensional, storage
is actually one-dimensional and CGTPIF works with single
value addresses within M. Note that M is in full storage

8
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mode and A, is stored in the manner typical of variable
dimensioning (matrix 51 of dimension n-by-m stored in array
M allocated (n+r)-by-(m+p) locations).

Suppose that array M is itself stored within a
larger vector V and that the first element of M is at loca-
tion LM in V. Columns of M are stored in consecutive
locations in V. Figure A-3 shows M's first column within

V. Note the following addresses are equivalent:

ADDR(V (LM) ) =ADDR (M(1) ) =ADDR (A, (1,1))
ADDR(V(LM+n-1) ) =ADDR (M(n) )= ADDR(A, (n,1))
ADDR (V (LM+n) ) =ADDR (M(n+1) ) =ADDR (A, (1,1))
ADDR(X(LM+n+r-l))=ADDR(§(n+r))=ADDR(§3(r,l))

ADDR (V (LM+n+7) ) =ADDR (M(n+r+1) ) =ADDR(A, (1,2))  (A-1)

where 'ADDR' is an address function giving the absolute
memory storage location.

Similarly, the addresses of all elements of matrices
A;, A,, A;, and A, have equivalents which specify the cor-
responding address within V and M. 1In the moving of arrays
mentioned previously and in computations involving arrays
it is necessary that such equivalences among addresses be
readily determined. CGTPIF includes several routines spe-
cifically dealing with such array manipulations.

Programmers often encounter difficulties in working
with arrays that are not fixed in size. The array storage
techniques employed in CGTPIF are readily understandable

if careful thought is given to the actual arrangement of

10
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arrays within program memory. If one has not previously
considered such aspects of array storage in FORTRAN programs,
it may be useful to determine various address equivalences

among A,, A,, A3, A,, M, and ¥ of Figures A-2 and A-3.

A.6 Common Blocks

CGTPIF uses named Common blocks exclusively. A

total of twenty-five Commons are used. Some provide communi-

cation with the LIBRARY routines, others communicate general
program information, others provide temporary array storage,
and others are associated with specific computational ele-
ments. The last-mentioned Commons will be discussed in
groupings according to the computational element to which
each group pertains. The elements of each Common are given
here but will be described by type only (integer, real,
scalar, vector). Information about array dimensioning is
given in the discussion of the 'MAIN' routine. Specific
definition of the elements of each Common are given in

descriptions of the routines of CGTPIF SUBS.

A.6.1 LIBRARY Commons. Three Common blocks com-

municate with thé LIBRARY routines:
COMMON/MAIN1/NDIM,NDIM1 ,COM1
COMMON/MAIN2/COM2
COMMON/INOU/KIN,KOUT ,KPUNCH
NDIM, NDIMl, KIN, KOUT, and KPUNCH are integer scalars.
COM1 and COM2 are real arrays providing temporary storage,

and are used occasionally for this purpose by CGTPIF also.

12
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Further details are given in the discussion of the MAIN

program.

A.6.2 General Commons. Two Commons communicate

general information:

COMMON/DESIGN/NVCOM, TSAMP, LFLRPI ,LFLCGT,
LFLKF,LTEVAL, LABORT

COMMON/FILES/KSAVE,KDATA ,KPLOT,KLIST,KTERM
All the variables are scalar and all but TSAMP are integer; 4
TSAMP is a real. Further detail about the elements of each
Common are included in the discussions of routines CGTXQ

and MAIN for /DESIGN/ and /FILES/, respectively.

A.6.3 Temporary Storage Commons. Three Commons

provide arrays for temporary storage:
COMMON/SYSMTX/NVSM, SM
COMMON/ ZMTX1/NVZM, ZM1 §7
COMMON/ZMTX2/ZM2

NVSM and NVZM are integer scalars. SM, ZMl, and ZM2 are

real arrays. The dimensioning of the arrays is discussed

in the description of MAIN.

A.6.4. Computational Element Commons. Sets of

Common blocks are associated with computational elements
A, B, C, D, and F of Figure A-1l. More detail about the
elements of each Common is given in the later sections

describing the routines of each corresponding computational

element.




A.6.4.1 Set A: Establish Dynamics Model. Three

different dynamics models may be employed--for each, three
Common blocks are used.
Design Model:

COMMON/NDIMD/NND,NRD,NPD,NMD, NDD,NWD, NWDD ,NPLD,
NWPNWD , NNPR

COMMON/LOCD/LAP,LGP,LPHI,LBD,LEX,LPHD,LQ,LQON,LQD,
LC,LDY,LEY,LHP,LR

COMMON/DSNMTX/NVDM, NODY ,NOEY , DM

Truth Model:
COMMON/NDIMT/NNT ,NRT, NMT , NWT
COMMON/LOCT/LPHT,LBDT,LQDT,LHT,LRT,LTDT,LTNT
COMMON/TRUMTX/NVTM, TM

Command Model:
COMMON/NDIMC/NNC,NRC,NPC
COMMON/LOCC/LPHC,LBDC,LCC,LDC
COMMON/CMDMTX/NVCM, NEWCM, NODC,CM

DM, TM, and CM are real arrays. All other variables are

integer scalars. The various models are discussed in the

next section of this guide.

A.6.4.2 Set B: Controller Setup. A pair of

Commons is associated with the setup computations for

the controller:
COMMON/LCNTRL/LPI11l,LPI12,LPI21,LPI22,LPHDL,LBDL
COMMON/CONTROL/NVCTL ,CTL

CTL is a real array. All other variables are integer

scalars.

adeii
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A.6.4.3 Set C: Design PI Regulator. A pair of ’

Commons is used for the PI design:
COMMON/LREGPI/LXDW,LUDW,LPHCL ,LKX,LKZ

COMMON/CREGPI/NVRPI,RPI

' RPI is a real array. All other variables are integer i

scalars.

: A.6.4.4 Set D: Design CGT or CGT/PI. The design

of the CGT or CGT/PI controller uses a pair of Commons:

COMMON/LCGT/LAll,LAl13,LA21,LA23,LA12,LA22,LKXAl11,

; LKXAl2,LKXAl13

' COMMON/CCGT /NVCGT,CGT 4
CGT is a real array. All other variables are integer l
scalars.

A.6.4.5 Set F: Design Kalman Filter. The design

o e Gme ek e et e eere e

of the Kalman filter uses a pair of Commons:

i COMMON/LKF/LEADSN,LFLTRK, LFCOV
COMMON/CKF/NVFLT,FLT

FLT is a real array. All other variables are integer

, scalars.

A.7 Dynamics Models

CGTPIF employs three time-invariant dynamics models
for computations: a "design" model, a "truth" model, and a
"command"” model. Each model is defined initially as a

continuous-time system, then is discretized by CGTPIF.

e . o

Any of the models may be established by user-provided H

subroutines, if desired. This section defines each model;

o 15
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a later section discussing computational element A describes

N At s e s <3 o s T

the manner in which the models may be entered into CGTPIF.

A.7.1 Design Model. The design model consists of

a system state differential equation, a disturbance state

..

i differential equation, an output equation, and a measure-

ment equation, as follow:

%(t) = A§(t) + Bu(t) + gxgd(t) + gg(t) (A-2a)
gd(t) = éngd(t) + §n¥d(t) (A-2b)
E g(t) = Q%(t) + ng(t) + Ey%d(t) (A-2c)
E z(t;) = Hx(t;) + Hn.(t,) + vit,) (A-24)

-~

; The under-tilde denotes the variable as being modeled as a
random process. X and n, are the Gaussian system and dis-

i turbance state vectors respectively; w and w, are indepen-

&

dent stationary zero-mean white Gaussian noises with

_ covariances

)
E{w(t)wl (t+1)} = Q& (1) (A-3a)
Elw, (t)wg (£47)) = @ 6(1) (A-3b)

' The vectors y and z are the output and measurement vectors,

~

respectively. V is stationary zero-mean white Gaussian

[ 5 discrete~time noise independent of both w and gd and of
| covariance
E{v(t,)vT(t.)} = RS,. (A-4)
~ 1T ] = 1]
16
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The dimensionalities for the design model are,

n = number
r = number
P = number
m = number
d = number
w = number

of
of
of
of
of
of

system states
system inputs
system outputs
system measurements
disturbance states

independent system noises

W = number of independent disturbance noises (A-5)

CGTPIF requires that the number of system inputs and out-

puts be equal: p=r.

Also, the number of disturbance states

cannot be greater than the number of system states: d<n

(due to setup for solution of the CGT equations of Section

A.11.5, in which the maximum row dimension is assumed to be n).

The dimensions of the matrices defining the design

model are given in row, column specification as

A : n-by-n
B : n-by-r
E.: n-by-d
G : n-by-w
Q : w-by-w
C : p-by-n
D : -by-r
2y p-by

E : -by-4
2y p-by

H : m-by-n
gn: m-by-4
R : m-by-m
An: d-by-d

17




G :

n d-by-wD

gn : wD-by-wb (A-6)

The design model is a dynamic model of the system
for which the controller is to be designed. The Kalman
filter will estimate the states of the design model and
these will be employed by the controller for feedforward

and feedback control.

A.7.2 Truth Model. The truth model consists of a

state differential equation, a measurement equation, and two
equations relating the system and disturbance states of the

design model to the truth model states, as follow:

2,(6) = Ax (t) + B (1) + Gw (0) (A-7a)
%t(ti) = Et%t(ti) + gt(ti) (A-7b)
x7(t) = Tpox, (t) (a-~7c)
g’d(t) = TypXe (t) (A-74)

with X, the truth model state and modeled as a Gaussian

random process. X~ and gé correspond to states of the

~

design model (equation (A-2)). +w,_ and v,_ are independent

t
stationary zero-mean white Gaussian continuous and discrete-

time noises with covariances

E{w, (t)w, (t+1)} = Q (1)

Redij

E{gt(ti)zz(tj)}

18
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The dimensionalities for the truth model are,

ng = number of system states
Ip = nurmber of system inputs
i m, = number of system measurements
1 Wp = number of independent noises (A-9)

CGTPIF requires that the numbers of measurements and of
inputs be equal for both truth and design models: m, = m
and I;m = I.

The dimensions of the matrices defining the truth

model are given in row, column specification as

A, nT-by—nT

=t
B, : nT-by—rT
k : G, : nRp-by-wy
Qt : wT—by—wT
He : mp-by-ng
Ry mp by~
EDT: n-by-nT
Tyrt d-by-n,, (A-10) {

The truth model represents the same dynamic system !
as the design model, but generally may be of greater dimen-
sion and complexity. It is intended to provide as complete
and accurate a description as possible of the system

dynamics, consistent with the design objectives.

A.7.3 Command Model. The command model is defined

by a state differential equation and an output egquation:




X.(t) = A X (t) +Bu (t) (A-1l1a)
Yo (t) = ¢ x (t) + Du (t) (A-11Db)

- f The dimensionalities of the command model are,

P ny = number of model states
Iy = number of model inputs ]
L Py = number of model outputs (A-12)

CGTPIF requires that the numbers of outputs of the command
and design models be equal: Py=P- Also, the number of

command model states cannot be greater than the number of

system states of the design model: n,<n (due to setup for
solution of the CGT equation of Section A.11.5 in which the
maximum row dimension is assumed to be n).

The dimensions of the matrices defining the command

model are given in row, column specification as

R WL AW T LS T W P SETRIYS BTSN MR s e e e

A : nM—by-nM

B _: nM-by-rM

=m
| Cp: Py YRy
¢ . - - -
t D Py by-ry (a-13)

E ' % The command model represents the dynamics that the
+ controlled system is intended to follow. Typically it is

§ of relatively low dimension since the desired dynamics
[

are usually characterized by first- or second-order descrip-

tions.
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A.8 File Usage

In addition to the input/output (I/0} communication
directly with the user terminal, CGTPIF uses four files for
I/0. The 'DATA' file is used for input, files 'SAVE'
'LIST' are used for output, and file 'PLOT' is used for

input and output. Because of the close relationship between

the SAVE and DATA files, they are discussed first.

A.8.1 SAVE File. During program execution the user
may direct CGTPIF to write any of the system models to the
SAVE file. If the PI design path has been executed, then
the existing sets of PI gains are automatically writtén to
SAVE just prior to program termination. An integer code
number written along with each output to the file identi-
fies each set of data: the design, command, and truth models
are codes 1, 2, and 3, respectively; the PI gains are code 4.

A code of -1 is written to indicate that no more data is

on the file.

A.8.2 DATA File. A previously created SAVE file
may be given the local file name DATA. During program exe-
cution, CGTPIF can be directed to read system models and PI
gains from DATA as needed. If the data sought by CGTPIF
is not on the DATA file, a message is written to the

terminal and execution proceeds on an alternative path,

as appropriate.

1




A.8.3 LIST File. During program execution results

of computations are output to the LIST file under format
direction. After program execution is stopped, LIST may

be routed to a line-printer for listing.

A.8.4 PLOT File. The PLOT file is used by CGTPIF
during controller and filter evaluations. Variables
derived from time-response simulations are written to PLOT
at each time sample. When the time-response run is com-
plete, selected variables are read from PLOT to generate

line-printer plots of the results.

A.9 Description of Routine 'MAIN'

MAIN specifies files to be used and their FORTRAN
unit designations (e.g., 'INPUT' is unit 5); it allocates
all array dimensions for the Common blocks and calls sub-
routine CGTXQ. A listing of MAIN is in Appendix D.

The appropriate unit designations for files SAVE,
DATA, PLOT, LIST, and of the user terminal are set in the
variables KSAVE, KDATA, KPLOT, KLIST, and KTERM, respec-
tively of the /FILES/ Common. The variable KIN of /INOU/
is set to the unit designator for the INPUT file.

Array allocation requires two steps: arrays are
allocated by specifying a vector length for each array in
its common declaration; the length of each array is then
set in an appropriate integer variable which communicates

array allocations to CGTPIF SUBS through the Commons.




Denoting the integer vector lengths allocated for

the various individual Common arrays as n,. n,, n3, ceey

nyo¢ arrays are allocated as follows:
COMMON/MAINI/NDIM,NDIMI,COMl(nl)
COMMON/MAINZ/COMZ(nl)

COMMON/SYSMTX/NVSM,SM(nz)

COMMON/ZMTXl/NVZM,ZMl(n3)
COMMON/ZMTXZ/ZMZ(n3)

i COMMON /DSNMTX /NVDM, NODY ,NOEY , DM (n )

COMMON/CMDMTX/NVCM,NEWCM,NODC,CM(ns)

COMMON/TRUMTX/NVTM,TM(ns)

COMMON/CONTRDL/NVCTL,CTL(n7)

COMMON/CREGPI/NVRPI,RPI(ns)
COMMON/CCGT/NVCGT,CGT(n9)
COMMON/CKF/NVFLT,FLT(nlo)
Note that the arrays of /MAIN1l/ and /MAIN2/ have the same §
allocations (nl); /ZMTX1/ and /ZMTX2/ also have the same
allocations (n3).
The corresponding statements setting the integer ‘

variables to the array allocations are {

NDIM = n,
NVSM = n,
NVZIM = n, a
NVDM = n,

5
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NVCTL = n,
NVRPI = ng
NVCGT = ng4
NVFLT = n,,

The allocations needed for each array are expressed
as functions of the system dimensions of equations (A-5),

(A-10), and (A-12). In the equations to follow, 'MAX' is

a function which takes the largest value from among its
arguments., Also, the following names will be used to repre-
sent certain sums of dimensions (these names correspond to

mnemcnics employed within CGTPIF, e.g., "npld" mnemonically

represents "n plus d" and "na" represents "n augmented”).

npld = n+d {A-14a)
nnpr = n+r (A-14Db) E
nwpnwd = wiwp (A-14c) |
na = n+d+nt {A-144d)

The array allocations needed are,

/MAIN1/, /MAIN2/: n,> MAX {[MAx(npld,nnpr)]z,ni}

1
(A-15a)

/SYSMTX/: n, >MAX{606,

2
[n(npld+r+p+m+w) + p{r+d) + m(m+d)

; 2 2 ’
L +d(d+wD) + W' o+ wh

[(nM+pM) (nM+rM)],
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2
+ wt],

+npld) + mz

[nt(nt+rt+mt+w t

t

[n(3n+2MAX(d'nM)) + p(nM)]:

[nnpr(3nnpr+r) ],

na?} (A-15b)
/3MTX1/, /ZMTX2/: ng > MAX[n,na’] (A-15¢)
/DSNMTX/ : n, > npld(2npld+n+p+m+nwpnwd)

+ r(n+p) + m? + @% + WP+ wl (A-154d)
/CMDMTX/: ng > ny(n4r +py) + £y (Py) (A-15e)
JTRUMTX/: ng > n(2n +npldtmtr) + m° (A-15£)
/CONTROL/ : n, > nnpr (2nnpr+p) (A-15g)
/CREGPI/: ng > r(4r+n) + nnpr2 (A-15h)
/CCGT/: ng > (n+2p) (n _+r +d) (A-15i)
/CKF/: N, > npld[(2npld+m)+1] {A-153)

Routines of CGTPIF SUBS which use these arrays
employ these equations to verify sufficient allocation has
been provided. If not, a message is written which spe-
cifies the array in question and the necessary allocation;
execution then is aborted.

The MAIN listed in Appendix D can accommodate

problems of dimensions given as follow:
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n < 15

npld < 15

r 5

A

5

A

m 15

{A

w 15

| A

nwpnwd < 15
n, <10
5

La}
A

5

o
=
1

=}
A

< 20

A

5

A

15

< 20 (2-16)

In these expressions, the substitutions of equations (A-1l4a)
and (A-l4c) have been used to impose constraints on the
total number of design model system and disturbance states.
These allocations are sufficient for problems all of whose
dimensions are equal to the numbers given in equation (A-~16).
Moreover, other combinations of dimensions, some greater
than and some less than these specific dimensions, will
also be accommodated. For the set of dimensions appropri-
ate to one's design problem, the equations of equation set
(A-15) may be used to determine if existing allocations are
adequate; or the problem may be attempted and CGTPIF will

signal any inadequacies in available allocations (if any
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exist). The specific values of allocations (n1 through

nlo) given by the MAIN or Appendix D are,

n, = 400
n, = 2125
ny = 1225
n, = 1750
ng = 225
ng = 1725
n, = 900
ng = 575
ng = 400
n;, 690 (A-17)

Since there are two arrays of length n, and also two

1
of length ns, this represents a total of (11640)lo words

of memory for array storage. As implemented in segmented
form, the memory utilized during execution is the sum of

the memory required by the largest of the load segment sets
and the memory required by the loader itself (about (10000)8
words) . The arrays allocated by MAIN are always in memory.
The largest set of segments loaded at any time includes

the segment which utilizes optional user-provided routines
(described in the next section). Thus the total array

allocations and the memory required to implement any

optional routines effectively determine the execution load

size attained by CGTPIF. For the CYBER system and




interactive execution, the total memory which is available

for array storage and optional routines is about (13000)10

words.

A.10 Optional Routines: Define
Dynamics Models

The user may choose to enter any of the three

dynamics models by using subroutines. Each model definition

requires at least two specific subroutines. These sub-

routines may then call any additional routines to accomplish

the necessary computations--routines of CGTPIF SUBS, LIBRARY,

or any user-provided subroutines may be used. In the list-
ing of Appendix D, DSND, DSNM, TRTHD, TRTHM, ACDATA, GUSTS,
and TBLUP1 are all optional routines used to establish
design and truth models of the longitudinal dynamics of an
aircraft subject to atmospheric turbulence.

For each model defined by subroutines, one sub-
routine must establish the dimensions of the model, and
another must set the values for all matrices of that model.
Each routine must have the appropriate name and arqument
list specified below. All model arrays appearing in the
argument lists must be allocated in full manner: the array
dimensions specified by "Dimension" statements within the

routines must be exactly those implied by the routine

specifying model dimensionalities and the array sizing given

by equations (A-6), (A-10), and (A-13). For example, if
the number of design model states (n) is established as 10,

then according to equation (A-6) the system matrix must be
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explicitly uimensioned A(10,10) in the subroutine which
| sets array values for the des gn model. All of these arrays
are initialized to zero before the array setting routines

are called, so it is necessary only to set non-zero array

. . elements within the subroutines. Any arrays of dimension
one in both row and column are actually scalars and need

f : not be included in a Dimension statement. Any arrays with |
ﬁ row or column dimension of zero are in fact nonexistent

arrays and must not be included in Dimension statements,
although they still must be included in the subroutine's
argument list (since calls to these routines from within

CGTPIF assume full argument lists).

A.10.1 Design Model. The two routines required

for the design model are 'DSND' and 'DSNM'. The first
specifies dimensions of the model while the second sets the
array elements for that model.
DSND has a single argument:

SUBROUTINE DSND (ND)
with ND an integer vector of length seven. In DSND the
elements of ND are set to the dimensions given by equation
(A-5) and in the order shown. Thus, for example, element 1

is set to the value n, element 2 is set to the value r, and

SO on.
DSNM has 14 arguments:

SUBROUTINE DSNM(A,B,EX,G,Q,C,DY,EY,H,HN,R,AN,
GN,QN)

Each argument is an array defined in equation (A-2), (A-3),

29
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or (A-4). Note the order in which the arrays appear in the

argument list is the same as the order of the arrays listed
in equation (A-6) and the dimensions given in that equation
must be specified in DSNM. Thus, for example, if DSND

sets n=5 then the matrix A must be dimensioned A(5,5) in

DSNM.

A.10.2 Truth Model. The two routines required

for the truth model are 'TRTHD' and 'TRTHM'. The first
specifies dimensions of the model while the second sets the
array elements for that model

TRTHD has a single argument:

SUBROUTINE TRTHD (ND)

with ND an integer vector of length four. In TRTHD the
elements of ND are set to the dimensions given by equation
(A-9) and in the order shown.

TRTHM has 8 arguments:

SUBROUTINE TRTHM(AT,BT,GT,QT,HT,RT,TDT,TNT)

Each argument is an array defined in equation (A-7) or
(A-8) . Note the order in which the arrays appear in the
argument list is the same as the order of the arrays
listed in equation (A-10) and the dimensions given in that

equation must be specified in TRTHM.

A.10.3 Command Model. The two routines required

for the command model are 'CMDD' and 'CMDM'. The first
specifies dimensions of the model while the second sets the
array elements for that model.
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CMDD has a single argument:
SUBROUTINE CMDD (ND)
with ND an integer vector of length three. In CMDD the

elements of ND are set to the dimensions given by equation

(A-12) and in the order shown.
CMDM has 4 arguments:
SUBROUTINE CMDM(AM,BM,CM,DM)
Each argqument is an array defined in equation (A-11). Note ]
the order in which the arrays appear in the argument list i

is the same as the order of the arrays listed in equation

(A-13) and the dimensions given in that equation must be

specified in CMDM.

A.l1l CGTPIF SUBS

In contrast to the routines described in Sections
A.9 and A.10, the routines of CGTPIF SUBS require no modifi-
cation to apply to specific design problems. In discussing
CGTPIF SUBS some detail as to the operation of specific
routines is given. For users who may elect to attempt
modification of routines, a detailed examination of the
source code is essential.

The executive routine for CGTPIF SUBS-CGTXQ- is
discussed first. Each major computational element and con-

stituent routines are then discussed in turn.

A.11.1 CGTXQ. The overall execution logic of
CGTPIF is determined by routine 'CGTXQ'. Specific

execution of the designs is achieved by calls to other

31
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individual routines, which are in turn executives to

routines comprising the various computational elements
shown in Figure A-1l.

Figure A-4 gives a flowchart of CGTXQ which empha-
sizes the major program decisions. Blocks representing
calls to the particular computational elements give (1)
the name of the routine which is executive to that element,
and (2) the letter code used in Figure A-1 to represent
that element.

All "flag" variables used by CGTXQ and CGTPIF SUBS
are integers. A value of zero implies that the condition
flagged is not true. While a non-zero value generally
implies the condition is true, positive and negative values
sometimes distinguish between different attributes of that
condition. Flags which pertain to general program logic
are included in the /DESIGN/ Common; flags which relate
strictly to specific computational elements are passed as
arguments in calls to the respective executive routines.

The elements of Common /DESIGN/ are defined as

"NVCOM" : The smaller of the array allocations of
/MAINl1/ and /ZMTX1/. Throughout much of
CGTPIF SUBS, the same array sizes are needed
for COM1l, COM2, ZMl, and ZM2. NVCOM is
tested to determine if sufficient allocation
is available for the temporary arrays.

"TSAMP": The controller sample period (in seconds).
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"LFLRPI":

"LFLCGT":

"LFLKF":

"LTEVAL" :

"LABORT":

Flag variable indicating availability of PI
gains in program storage. A value of 0
means the gains are not available. Values
of -1 and +1 mean the gains are available and
have been obtained either from the DATA file
or by computation in the current program
execution, respectively.

Flag variable indicating if CGT design/
evaluation is in execution. A value of 1
means a CGT design has been determined, while
values of 0 and -1 mean the converse. More-
over, a value of -1 signifies that an open-
loop CGT design is infeasible (PI gains not
available and design system unstable).

Flag variable indicating filter design is in
execution.

Flag variable indicating controller evaluation
is with respect to truth model.

Flag variable indicating execution abort
status. If LABORT is positive then execu-
tion will abort due to insufficient array
allocation, and the specific value is the
allocation needed. If LABORT is negative,
the abort is due to dimensional incompatibil-
ity as mentioned in Section A.7 for each
model. If the incompatibility affects the
design model the program aborts execution;
for the other models only the specific exe-
cution path is aborted.




"IPI", "ICGT", "ITRU", and "IFLTR" are additional

flags related to specific computations. IPI and IFLTR
test the successful execution of the computations of
routines 'PIMTX' and 'FLTRK', respectively. The other two
flags have values according to:

"ICGT": Flag tests if command model is established.
A non-zero value indicates the command model
is established, and if negative that it has
also been written to the SAVE file. If the
command model is not established, ICGT is
zero.

"ITRU": Flag tests if truth model is established.
Specific values have the same significance
as for ICGT, but with respect to the truth
model.

CGTXQ includes other decision tests not shown in
Figure A-4. These are not discussed since they involve

obvious tests on the flags defined above and the code is

simple.

A.11.2 SETUP. Routine 'SETUP' serves as an inter-
mediary in establishing the various dynamic models used by
CGTPIF. It calls one of three other routines according to
the value of its input argument "ITYPE". The design, com-
mand, or truth models are established for ITYPE =1, 2, or 3,
respectively.

The routines 'SDSN', 'SCMD', and 'STRTH' actually
establish each of the models. Each uses the routine ‘'RSYS'

to enter the continuous-time model representation. The
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model's arrays are stored initially in vector SM of
/SYSMTX/ Common. Each model is discretized (using the
sample period T = TSAMP) and the new arrays defining the
discrete-time models are stored in permanent vectors DM,
CM, or TM of the /DSNMTX/, /CMDMTX/, or /TRUMTX/ Commons,
respectively.

The continuous-time models are entered with sub-
routine RSYS. The models may be entered directly from the
user terminal, from the DATA file, or using optional user-
provided routines described in Section A.10.

The computations performed under SDSN, SCMD, and
STRTH are discussed below. The routines which perform each

computation are indicated following the equations.

A.l11.2.1 SDSN. SDSN calls RSYS to read in the
dimensions of the design model and the arrays defining it.
The dimensions are stored in the variables of /NDIMD/.

The first seven variables are the dimensions of equation
(A~5) in order and the final three are the sums of dimen-
sions of equations (A-14a), (A-l14c), and (A~14b), respec-
tively. A call to 'DSCRTD' then gives the discretized
model.

An augmented system description is formed with

the system and disturbance states:

(A-18)




- e re smwn

C o rememrie

and partitioned matrices describing the dynamics of the

augmented system are formed:

[—
A'
= |Tod X (A-19a)
—a o}l a
~
B
B, = -é- (A-19b)
— ., -
G, 0
G = |-—-+-=- (A-19¢c)
* lois
L.~ 1 4
—
olol
Q, = |-=-t--- (A-194)
o011 Q
L t TRy

with component matrices defined in equations (A-2) and
(A-3) . Matrices A, and G, are stored permanently in vector
"DM" for reuse in Kalman filter design.

The corresponding discrete-time augmented state

transition model is,
Xaltisg) = 8%, (t5) + B, ulty) + 5, (%)
(A-20)
where, assuming u is constant over a sample period,

AT
= e (A-21a)

¢
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T
B, = ./0. _Qa(T-T)Qad'r (A-21b)

A_(T-1)
where ga(T-1)=e a and the strength of W, is given by

d

Q = fT¢ (T-1)G_Q_GYot (T-1)d (A-21c)
=a d 0 -a 1 —a~—a—a—a 1 1

Matrix ga is stored permanently in vector "FLT" of /CKF/

and Q is stored permanently in vector DM.
d
ga and Ea may be partitioned to the component
d
dimensions to yield

2 !
_ | =1 =
$a T -6-%‘5-9 (A-22a)
L= "' -n
F_Ed
ag 0

Matrices ¢, E

. ' 2, and By are stored permanently in

d
vector DM. The deterministic discrete-time design model

then is,

) = $x(t,) + Bau(t,) +E n,(t,) (A-23a)

=i+l 4
nglt; ) = & ny(ty) (A-23b)
y(ty) = Cx(t,) + gyg(ti)+§y_qd(ti) (A-23c)
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Matrices C, gy, and gy are as originally defined and are

retained in vector DM. Eqgquations (A-23a-c) are used to
propagate the time response for the design model in the
controller evaluation routines.

- ! An augmented measurement matrix is formed and

o

stored in vector DM:

= [H | H] (A-24)

H
—a -n

where H and H are as in equation (A-2d).

The noise strengths Q, gn, and R of equations (A-3)

and (A-4) are also stored in vector DM so that they are

rr—— vy oe ey

available for modification in the Kalman filter design
path.
To avoid unnecessary computations in later code,

if matrix gy does not exist or if Qy or Ey are zero

] matrices then the variables "NODY" or "NOEY" (/DSNMTX/)
are set to 1 as appropriate. In other circumstances these
; variables are zero and computations involving these arrays
are carried out.

Equations (A-18), (A-19), (A-21), (A-22), and
(A-24) are computed under the direction of DSCRTD. Routine
'"ODSCRT' (called by DSCRTD) forms the partitioned matrix
ga and computes the matrix Qad using the LIBRARY routine
"INTEG'. DSCRTD computes ¢ and B, using a call to the

¢ d
LIBRARY routine 'DSCRT'.
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A.11.2.2 BSCMD. SCMD begins by testing if PI

regulator gains are available. If they are, a CGT/PI
design will be pursued by routine 'SCGT'. 1If not already
available, the user may choose that the PI gains be read
from the DATA file. If the gains are not available and
the system is stable then an open-loop CGT design will be
pursued by SCGT; otherwise, if not stable, no CGT design
is allowed and SCMD is exited. The logic is represented
in the flowchart of Figure A-5. The remainder of SCMD

is indicated by the block "establish command model" and
is described below.

The command model may be established repeatedly
during program execution. It is entered with a call to
routine RSYS. The dimensions of the model are stored in
the variables of /NDIMC/ and in the order shown in equa-
tion (A-~12). A call to 'DSCRTC' then gives the discretized

model:

ﬁm(ti+l) = gmﬂm(ti) * Emdgm(ti) (A-25a)
Yolty) = ¢ x () +Du (t,) (A-25b)

where, for u. constant over a sample period

AT
o =" (A-26a)

B =f0 2, (T-T)B_dt (A-26b)
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and A B, Cho and b, are as defined in equation (A-1l1l).

Matrices & and B are computed with a call to
—m =mgy
routine DSCRT of the LIBRARY. % , B , C , and D_ are
—m’ =m.’ =m -m

stored in vector "CM" of /CMDMTX/. Equations (A-25a,b)
are used in propagating the model states and outputs in
the controller evaluation routines.

In /CMDMTX/, the variable "NEWCM" signals that a
new command model is being established (NEWCM non-zero).
If the matrix Qm is zero, the variable "NODC" is set to a

non-zero value.

A.11.2.3 STRTH. The continuous-time truth model
is established with a call to routine RSYS. During program
execution the truth model can be redefined as often as
desired. The dimensions of the model are stored in the
variables of /NDIMT/ in the order shown in equation (A-9).

A call to 'DSCRTT' discretizes the truth model:

=& 1
Belti) = 22 (8y) Etdgt(ti) * ¥td(ti)
(A-27)
where, for u, constant over a sample period,
AT
., = e (A-28a)
-t
T
Etd = jg gt(T-r)gth (A-28Db)

is,
d

and the strength of the noise w,

T
_ _ T T _ _
o - fo 81-1)6,Q,G, 0, (T-1) dr (A-28c)




Matrices ¢, Etd' Qtd as well as He,
stored in vector "TM" of /TRUMTX/.

R

T

pr’ and Ty are

tl

DSCRTT computes gt and Et using routine DSCRT of
d

LIBRARY. Q is computed using routine INTEG. )

td i

A.11.3 PIMTX. Computations that are necessary
to the controller designs but independent of design itera- L
tion for a fixed design model are computed under the
direction of PIMTX. The input argument IPI is set to 1
following successful computation; subsequent entries into
PIMTX then test IPI and return immediately without recompu-
tation of the information.

PIMTX forms an augmented matrix and then forms its

inverse. The resulting matrix is termed the Il matrix.

Partitions of the Il matrix into sub-arrays of the original
component dimensions are then stored individually in the

vector "CTL" of /CONTROL/.

—~ \ -1
(¢-1)! B
= (i TS (a-29a)
R
T i
I-= ﬂf-.}---ﬂf (A-29b)
Z21 1 T2

Matrices ¢, By €, and Qy are as defined in equation
(A-23). The Il matrix is used in computations for both the

PI and CGT controllers.
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PIMTX then calls routine 'CDIF', which sets up two

augmented matrices for the control-difference PI regulator:

] F"o :
1 B
o, = |-=---9- (a-30a)
: o' 1
. _L— ! =
!
-
0 j
: Bs = |-—- (A-30Db) |
P (]
B

%5 and By are stored in vector CTL of /CONTROL/.

A.l11.4 SREGPI. Computations involved in the
design of the PI regulator are directed by routine SREGPI.

Routine 'WXUS' is called first to determine the quadratic

weighting matrices of the discrete-time optimal cost func-
tion from the continuous-time input quadratic weights.

Quadratic weighting matrices (assumed diagonal) are

e . a—— s« ap ARy

entered directly by the user from the terminal for costs

i assigned to output and input deviations and to input rates--

Y, Hy' and U, respectively. These matrices are stored in
vector "RP1" of /CREGPI/. An augmented perturbation state

vector is defined to be

x

(A-31)

b
[

v e p——

Su

A weighting matrix on the state vector x is formed as
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.

T
X, =c’xc (a-32a)
11

X =U_ + DYyp (A-32b)
_022 -y ¥y

X = Clyp (a-32¢)
2c = 2y

12

Routine 'FORMX' performs these computations and forms

§cll §012
& = T (A-33)
X, X,
12 22

The user is then given an opportunity to modify individual
elements of X (symmetry is preserved automatically by
WXUS) , as for instance, to alter individual diagonal ele-
ments of X, - The associated continuous-time cost func-

11
tion is,

T [ 0
J = (A-34)
° L
where u is the control difference ("pseudo-rate")
u = Au (A-35)

The corresponding discrete-time cost function is defined

by
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Canent ¢

Ry

N
J = Z;’[gl‘(ti)EGE(ti)+§T(ti)p-6§(ti)+2g'r(ti)§6§(ti)]
i=0

and the discrete costs are,

t,+T
T
Xs = 5 (T)X0 (T)ar

ty

t.+T T
f * [Bg(T)XB4(T)+U_ldt

ty

U(S=

t,+T
1
S, = f 0T (T)XB, (1) at
=8 t . - =—=é
1

in which

24 (1)

B4(T)

T
J 2(o1ac
0

(A-36)

(A-37a)

(A-37b)

(A-37¢)

(A-374)

(A-37e)

and Bs is as defined in egquation (A-30b). The integrals

of equations (A-37a,b,c) are approximated in a two-step

computation. First, &, and By are treated as constants

over the sample interval with value set to their respec-

tive averaged values at the beginning and end of the

interval:




el

¢ = HI[L + %l (A-38a)

and By = %[0 + B, (A-38b)

in which %5 and B, are as defined in equations (A-30a,b).
With these approximations, each of the integrands is con-
stant over the integration time T, so the integrals are

obtained as

X, = T[3°X3,] (A-39a)
Xs 2 X%

~ _ —-T —_— _

s = T(¥xB,] (A-39c)

This is a better approximate evaluation than simple Euler
inegration provides. These three discrete-time costs are
returned by WXUS as arguments "X","U", and "S", respec-
tively.

The cost function of equation (A-36) includes the

cross-weight S, weighting products of states and inputs.

8
Routine 'PXUP' is called to compute modified system and

weighting matrices to allow the optimization to be framed
in terms of state and input quadratic costs only (Ref 29):

Define a modified system,

X(ty,)) = 2&(e) + Ba'(t,)




with
- _ -1.T
25 = &5 - BsUs S5 (A-40Db)
i — -
ug = u + 06l gx (A-40c)

for which the cost function becomes ?

= Z!s [gT(ti)ggg(ti)@"f(ti)gég' (t;)] (A-41a)
i=0

and

l T

The cost function of equation (A-4la) is now in standard

form for solution of the steady-state Riccati equation.

PPNt apr o, PR A T (L

{ PXUP returns matrices ¢5, XG' and 051 § of equations
‘ (A-40b), (A-41b), and (A-40b), respectively. An additional
¢ matrix needed for the routine which computes the solution

to the Riccati equation is also computed by PXUP:

¢ = p.ulpT

SREGPI next computes the steady-state solution to

the discrete-time Riccati equation using routine 'DRIC’ of

LIBRARY. DRIC solves for Kp in
[ .
K. = 0K _(1+U;K ) to: + x; (A-43)
SR~ =8 SR'==§=R’ —=§ ~ 3¢




-

using an iterative procedure discussed in Reference 24.

|
In addition to Kp, DRIC returns the closed-loop system z
matrix
!
!

Secr = (;+ggER)'lgé (A-44) j
which is stored in vector RPI. H

Routine *‘GCSTAR' then is called to compute the {
optimal feedback gain matrix for the original system in
two steps:

The optimal feedback gains for the modified system of

equation (A-40) are,

P T— -1_T-—
i * = + B .

and from these the optimal feedback gains for the original

system are obtained:

G = g*" + Uylsy (A-46)

which can be considered as partitioned into gains on the

components of the state vector x of equation (A-31). The

optimal input then is,

1 G* ]|-=--2- (A-47)

Au*(t,) = - [
-1 1 TC2 |sulty)

*
gc
¢ SREGPI uses these partitions of gé and partitions

of the Il matrix of equation (A-29) to compute the gains

K, and K, of the optimal PI regulator and stores them in

vector RPI:
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= G* * -
Sy Ec 1 + Sic T (A-48a)
1 2
= * * -
2z §c1112 + 902122 (A-48Db)

The PI regulator in incremental-form (Ref 32) utilizing

these gains is implemented as,

x(t, .)
= i-l (A-49)

i ult, ;)

The controller evaluation routines which propagate the
response of the PI regulated system to non-zero initial

conditions use equation (A-49) to compute the control

! input. Note that this assumes that the outputs are to be
driven to zero by the PI regulator. No provision is made
for evaluation of the PI regulator in response to control

inputs.

A.11.5 SCGT. Routine SCGT directs the computa-
tions involved in design of an open-loop CGT or closed-
loop CGT/PI controller. The first set of computations

are performed by routine 'CGTA'; the results depend only

on the design and command models. Since the design model
i is invariant throughout program execution, CGTA is not
called unless 2 new command model has been established

(test value of variable NEWCM in /CMDMTX/).

50




The CGT theory formulates an "ideal" state and
input trajectory to achieve exact matching with the command
model outputs. These ideal trajectories are assumed to be
expressable as linear functions of the command model's

states and inputs and the disturbance states:

1ok (A-50)
gI(ti)
A set of equations are derived for the A, through A,
partitions. They are,
Aj) = TR, (80 + 1 C0 (A-51a)
By, = Euénﬁmd + 7,80 (A-51b)
A3 = T1,A,5(2-1) - 311§xd - Ip5E (A-51c)
Ajy = TpiBy (7T + 7500 (A-514d)
B2 < E2]_§11§md + T,,D0 (A-5le)
Ayy = Ty R;5(8 -1) - T21Bx, ~ T22By (A-51£)

Of these equations, those for éll (equation A-5la) and
513 (equation A-51lc) must be solved independently. The
51




other equations then express the remaining éij matrices in
terms of known matrices. The two equations to be solved

are of the form

X = AXB + C (A-52)

—

for which an algorithm for solution is reported in Refer-
ence 4. This algorithm has been implemented in routines
described in Reference 10. Certain conditions which must
be met for a solution to exist are discussed in these
references and in Reference 32, as well as in Section
3.3.3 of this thesis.
CGTA sets up equations (A-5la) and (A-5l1lc) then

AXBMXC

calls routine 'AXBMXC' to solve for A,, and A

11 3°
solves each equation using routine ‘SLVSHR'. Iterative
refinement of the solution is pursued until the Euclidean
norm of the error residual matrix is less than 10-6
(routine 'ENORM') or as many as three refining iterations.
If the solution does not meet the error tolerance afterf
three refinement steps, a message is printed and execution
proceeds. The routines AXBMXC, SLVSHR, and ENORM are
adaptations of routines described in Reference 10.

With A

and ;% determined, CGTA proceeds to

11 3
compute A,,, Ay, Ayor and 523. All the éij matrices are
stored in vector "CGT" of /CCGT/.

SCGT then calls routine 'CGTKX' to compute the
gains employed by the CGT and CGT/PI controllers. For the

open-loop CGT controller routine SCMD sets matrices Kx
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and K, of equation (A-48) to zero. CGTKX computes gains

on command model states and inputs and disturbance states,

respectively, as

Exm =K A)) * Ay (A-53a)
5xu =KAo t 2y (a-53b)
Ky = KyBy3 + 2y (a-53c)

These three gains are stored in vector CGT.
The closed~loop CGT/PI control law is implemented

in incremental form as

]

ult,) =u(t, ;) - K [x(t)-x(t; ;)]

i
+ melim(ti)’im(ti—l)]

* K, [nglt;)ng (e, )

ﬁm(ti-l)

x(t, 4)
)

I
2)
S/

(A-54)

vty

The open-loop CGT is obtained by employing equation (A-54)
with PI gains §x and 52 both zero matrices, giving the

effective result for the open-loop CGT control law as
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[

EE R A L T gt~ R SR

ult;) =ult; ) + A Ix (£ )-x (t. ;)]

+ Ayglng(ty)-n, (e, )] (A-55)

Equation (A-54) is used by the controller evaluation
routines to compute control inputs for either CGT con-

troller.

A.l1l1.6 CEVAL. Routine 'CEVAL' is executive to a
set of routines which perform evaluations of the PI, CGT,
or CGT/PI controllers. If the PI regulator is being evalu-
ated, the continuous-time domain mapped eigenvalues of the

closed-loop matrix 26 of equation (A-44) are computed

CL
and printed by the routine 'POLES'. The primary evaluation
tool is the simulated time-response of the controlled
system. For the PI regqulator the response is generated

for non-zero initial conditions and no commanded input.

The system with either CGT controller is driven by step
inputs on any one of the command model's inputs and by
non-zero initial conditions on system and disturbance
states, if desired. The system time response can be propa-
gated using either the design model or the truth model
state transition equations. Plots of the resulting time

behavior of the states, inputs, and outputs of the system

are printed at the user terminal and output to the LIST

file.
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Specific execution of the controller evaluation is

affected by flags "LFLCGT" and "LTEVAL" of /DESIGN/.

These signal the design as either of PI (LFLCGT=0) or CGT
type, and indicate the evaluation is to be with respect

to the design (LTEVAL=0) or truth models. The flowcharts
of Figures A-6a,b,c show the basic decisions and execution
paths pursued in the controller evaluation. As many as
two plots of user-selected variables may be printed at the
user terminal while plots of all relevant variables are
also output to the LIST file. If the user wishes no plots
printed at the terminal, the time-response simulation is
not executed. Each plot can include as many as five vari-
ables plotted versus time.

Because the routines execute differently according
to the specific conditions of the controller to be evalu-
ated and the system model used for simulation, there are
numerous tests and variant sections of code. Details
finer than that shown in Figures A-6a,b,c are not discussed.

Response variables are stored at each time step
in sets by type in the scratch vector SM of /SYSMTX/.

A collection of several sets of variables is itself con-
sidered to be the set of all relevant variables for plot-
ting at each sample time. Other sets of variables at one

sample-time in the past are also stored in vector SM. The

partitioning of SM occurs both in routine CEVAL and 'VOUTIC'.

Routine VOUTIC is used to establish initial condi-

tions for the system and to define the desired plots. The
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states of the model to be used for system time propagation
are given initial values by the user. For the PI evalua-
tion, the following variables may be plotted: system
states, outputs, and inputs. For the CGT evaluation the
disturbance states and the outputs of the command model
may also be plotted. If a command model output is among
the variables in a terminal plot, then all variables of
the plot are plotted using a single scale range to facili-
tate evaluation of actual and commanded output responses.

For all other plots each variable is scaled independently.

Ordinarily the input argument "NVOUT" specifies the total
number of relevant system variables available for plotting.
VOUTIC sets NVOUT to zero if no plots are to be printed at
the user terminal; CEVAL then does not perform a simula-
tion.

Routine 'CTRESP' performs the time-response simula-
tion. An input argument gives the total intended duration
of the simulation ("TEND"). CTRESP executes the simula-
tion as an integer loop with control inputs and model propa-
gation computed during each pass. The value of TEND is
adjusted so that the total time is an integer multiple of :

the controller sample period and of one hundred. Thus all

plot samples coincide precisely with controller samples
and the entire time interval is spanned by 100 evenly
spaced samples. The loop is executed for the number of

steps thus determined. A vector of response variables is
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written to the PLOT file at one hundred equally spaced
time samples during the simulation.
In performing the simulation, eight primary routines

are used. They are discussed briefly below:

'DUPDAT': Propagates the states of the design model
forward in time using equations (A-23a,b).

'CUPDAT': Propagates the states of the command model
forward in time using equation (A-25a).

'TUPDAT': Propagates the states of the truth model
forward in time using equation (A~27) with-
out the noise input.

'XFDT': Transforms the state vector of the truth
model to the design model state and distur-
bance vectors using equations (A-7c,d).

'URPI': Computes the control input due to the PI
controller alone using equation (A-49).

'UCGT': Computes the control input due to the CGT
controller alone and adds it to the control
given by URPI. The increment due to the CGT
or CGT/PI alone is added as

u(t,) «u(t,) + Exm[gm(ti)-gm(ti_l)]

* Exu[Em(ti)_Bm(ti-l)]

+ Ky [nglt;)ng(e; )]

x (t._4)
+ K_|[C D ] -
-—m 1




'YDSN': Computes the outputs of the design model
using equation (A-23c).

'YCMD': Computes the outputs of the command model
using equation (A-25b).

On return to CEVAL the PLOT file contains 101 sets
of samples from the system time response simulation
(sample at time=0. and one hundred additional samples at
equal time intervals). Plots of selected variables to the
user terminal include 51 sample points for each variable.
If the time duration originally requested for the simula-
tion spanned fewer than 50 controller sample periods, the
terminal plots will have a duration equal to 50 times the
controller sample period. Otherwise, alternate samples
from among those on the PLOT file are plotted: the entire
duration of the simulation is spanned but with time resolu-
tion half as fine as available from the PLOT file samples.
Plots are then output to the LIST file. These plots include
all sample points and all variables are plotted. Each plot
includes the time-responses of five variables. Routine
'PLOTLP' computes and prints all plots to the terminal and
the LIST file.

When plotting is complete, CEVAL provides the oppor-
tunity to perform additional simulations with the same
controller. When no additional simulations are to be run,

CEVAL is exited.
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A.11.7 FLTRK. Routine 'FLTRK' effects design of
a steady-state Kalman filter for the design model defined
by equations (A-20) and (A-2l1). The measurement equation
given by equations (A-2d4) and (A-4) is rewritten in terms
of the augmented state vector and augmented measurement

matrix (equations (A-18) and (A-24)):

g(ti) = Ea’éa(ti) + ¥(ti) (A-57)

A call to routine 'KFLTR' of LIBRARY computes the steady-
state covariance matrix and the Kalman filter gains. The

covariance matrix is the solution Eé satisfying

5 2o (5 5Ty 5 uTary—1

S 14T
. HEJE + 9,  (A5O)

d
and the Kalman filter gain matrix is,

1

= _ 5 ol 5 T oo _
Kp = P H_[B P H_ +R] (A-59)

The Ea matrix employed is prior to update(g;).

KFLTR uses an iterative technique described in Reference

24 to compute the matrix Ea’ The filter gain matrix gp
is stored in vector FLT of /CKF/. A vector of the standard
deviations of the state estimates (square-roots of the
diagonal elements of P_) is also stored in FLT. An addi-

tional output of KFLTR is the measurement update matrix

M, = (I - KH] (A-60)

It is put into temporary storage in vector COM2 of /MAIN2/
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for use in the filter evaluation routines.

The first execution of FLTRK in a given run of

e A S e ————————_ -

CGTPIF uses the matrices Qad and R of equations (A-2lc)

and (A-4) as determined from initial entry of the design
model. Subsequent executions of FLTRK begin by offering
the user an opportunity to modify the system noise strength
matrices Q and Q (no provision is made for direct entry

of the augmented, discretized noise strength matrix Qad) i
and the measurement noise strength R of equations (A-3a),
(A-3b), and (A-4), respectively. Routine 'QDSCRT' is
called to form Q_ (equation (A-19d)) and compute the new
discrete-time system noise covariance matrix ga as given

a
by equation {(A-2lc). A new Kalman filter gain matrix is

then computed as described above.

A.11.8 FEVAL. In 'FEVAL' the eigenvalues of the
design model-Kalman filter system are computed with a call
to POLES. The primary evaluation téol is a covariance
analysis of the filter in which the filter's estimation
error is evaluated in operating on measurements taken from
the truth model. These "true" estimation error standard
deviations are plotted along with the filter's computed
error standard deviations.

The poles of the system with filter are the eigen-

values of

Sxp = M2, = [I-RgH 12, (A-61)

T e s e —
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where M, ga, KF' and H  are given by equations (A-60),

(A-2la), (A-59), and (A-24), respectively.
The covariance analysis entails propagation of an

error covariance matrix through fifty filter (controller)

L' ; sample periods. At each time sample a vector of true and
filter computed estimation error standard deviations is
written to the PLOT file. When the run is complete these
are plotted pairwise (true/computed) for each state in

a series of plots to the LIST file. The final RMS errors
for each state are also printed at the user terminal.

Define an augmented state vector

[ ™

Irt

(A-62)

zAx
HE SRS

with x_ the truth model states and S the filter state

, ; t
. i estimates. Time propagation for the augmented state is
given by
f - + _ 1
: §c(ti) = 9c§c(ti-1)+¥cd(ti-1) (A-63) r

where

(A-64a)

! and w, 1is zero-mean white Gaussian discrete-time noise of
: =4

discrete-time noise covariance
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T
Elw_ (t.)w. (t.)} = 8. . (A-64Db)
T:Cd 1 —Cd J ng 13

, with
Q. = fT4> (T-1)G_Q,G 8" (T-1)d (A-64c)
; _cd 0 =C T —C“t—c—c T T
¥
b and
s,
: §_c = -C-)- (A-644d)

In these equations Qe & 0 Q,, and G, are from equations

t
(A-28a), (A-21la), (A-8a), and (A-7a), respectively.

Note that equation (A-64c) is actually

|OJ

]
Q ]
¢

0. = (_tai___

"Ca o

I

(A-65)

1O

where gt is determined according to equation (A-28c).

B e e i T VO R S P P R st R

d
FEVAL uses gt directly rather than form the larger matrix
d
&
The measurement update equation is, :
+ _ !
§c(ti) = §c§c(ti) + 5c¥t(ti) (A-66)
] in which
. 1 i 0
(. A, = ety ittt (A-67a)
Kpgt : [l_gpﬂa]
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=l === (A-67b)

K

=

E Initial conditions for §c(t;) are taken as the zero
vector.

The covariance of the augmented state X, is
assumed to be zero at the initial time (gc(to); and is

propagated forward by

- _ + _
P(t) =2 P (v, )8 + gcd (A-68a)
; and
’ +, - .T T
g P (t]) = AP _(t])A, + K_R.K_ (A-68b)
Note that in equation (A-68b) :
|
t
T o1 ¢
BRele = |71 R5F (A-63) |
= ! SF=t=F :

FEVAL forms the lower right partition of equation (A-69)

. . . T i |
rather than forming the larger matrix KR K.

The filter estimation error for the design model's i

system and disturbance states following measurement update is,
(t.) (A-70)

. with

= [-C 1 I] (A-71a)
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and

e = [Tppd Tyl (A-71b)

in which IDT and ENT are as defined by equations (A-7c)
and (A-74d).
The estimation error covariance at each sample

period is thus

the

=CPp T
“c—c i

ge(ti) (A-72)

The diagonal elements of ge are the variances of the esti-
mation error for each system and disturbance state.
Taking the square~root of each to obtain the standard
deviations, these and the standard deviations from the
filter's computed covariance matrix are written to the
PLOT file at each sample time.

Routine 'DACOV' forms matrix gc of equation
(A-71la) and then computes ge(ti) according to equation
(A-72). The true and filter computed standard deviations
of the estimation error are then determined and written to
the PLOT file.

Routine 'ACOVUD' first forms matrix gc of equation
(A-64a) . The product gcgc(tl_l)gz is then obtained and

Q is added to its upper left partition to give gc(t;) as

t
d
in equation (A-68a). Next the matrix éc of equation

. . - T
(A-67a) is formed. Then, after computing écgc(ti)éc

|
|




the product Kthg§ is added to its lower right partition
to obtain gc(ti) of equation (A-68b).

The adding of a given matrix to a partition of
another as required for equations (A-68a) and (A-68b) is
accomplished by routine 'FPADD'. 1Input arguments to FPADD
specify the size of the partition to be dealt with ("NRY"-
by-"NCY") and the starting address of that partition
("LADDR") in the large matrix.

FEVAL calls DACOV initially to determine the errors
at time=0., then calls ACOVUD and DACOV repeatedly in a
loop to obtain the errors at each time sample. When these
samples are completed, plots of the results are output to
the LIST file using calls to PLOTLP for each state. The
RMS errors at the final time sample are printed at the

terminal for each state.

A.11.9 Utility Routines. CGTPIF includes a

number of routines which perform specific computations
useful to several of the larger computational elements
discussed in Sections A.11.2-A.11.8 above. Each routine
will be discussed briefly. The function performed and the
input/output arguments will be delineated. In a few cases
variable "LABORT" (signifying abort of program execution)
of /DESIGN/ or the model dimensions of /NDIMD/, /NDIMC/,
or /NDIMT/ are modified; in all other cases only variables

appearing as formal arguments are modified by the sub-

routines.
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RSYS (A, L, ND, ITYPE, IWRT)

Rout ine

'RSYS' is used in entering any of the three

dynamic models describing the design problem. It

distinguishes among the models it is dealing with

and provides prompts to the user appropriate to

each. Its formal arguments are:

"All :

llLll e

L1} ND n .

"ITYPE":

"IWRT":

Output vector containing all arrays
defining the dynamic model.

Output vector containing the starting
addresses of each array within vector A.
The order of the array starting addresses
is the same as in equations (aA-6), (A-10),
or (A-13).

Output vector used internally by RSYS to
store the dimensions of the model being
entered. The order of the dimensions is
the same as in equations (A-5), (A-9),
or (A-12).

Input integer scalar signifying the model
to be entered. Values of 1, 2, or 3
refer to design, command, or truth models,
respectively.

Input/output integer scalar indicating if
specific model has been previously
entered, and if so if it has been written
to the SAVE file. For IWRT non-zero the
model has been successfully entered; for
IWRT negative the model has also been
written to SAVE. 1IWRT is initialized to
zerc by the calling routine and set to
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values by RSYS to control its functioning
in subsequent calls dealing with the same
model .

DSND (ND)
Routine 'DSND' is a dummy routine of the same name
as an optional routine described in Section A.10.
It is loaded if the user does not include the
corresponding functional routine. It sets the first
dimension of the model to zero, signaling RSYS that
a "real" routine does not exist.

"ND": Output vector intended to contain model
dimensions. Its first element is set to

z2exo.

: CMDD (ND)
Same as for DSND.

TRTHD (ND)
Same as for DSND.

DSNM (A, B, EX, G, Q, C, DY, EY, H, HD, R, AN, GN, QN)
Routine 'DSNM' is a dummy routine of the same name
as an optional routine described in Section A.10.
It merely "completes the load" in the event the user
elects not to include the functional routine.

CMDM (AM, BM, CM, DM)
Same as for DSNM.

TRTHM (AT, BT, GT, QT, HT, RT, TDT, TNT)
Same as for DSNM.




DSNDM (ND, NAD)
Routine 'DSNDM' sets values into the design model
dimension variables of /NDIMD/. It also stores the
array dimensionalities of the model into a two-
dimensional array for use by RSYS. Finally, it
tests to determine if sufficient allocation has
been provided in vector DM of /DSNMTX/; if not,
LABORT of /DESIGN/ is set to flag allocation

error.
1 "ND": Input vector of model dimensions.
: "NAD": Output array of model matrix dimensions.

E Columns 1 and 2 are the [row,column]
dimensions of each matrix in the order

E of the arguments of DSNM. For example,

; matrix "B" is argument 2 and is of dimen-
sion (n-by-m); thus DSNDM sets NAD(2,1l)=n
and NAD(2,2)=m.

o

CMDDM (ND, NAD)
Same as for DSNDM but for command model and common
blocks /NDIMC/ and /CMDMTX/ are used.

TRTHDM (ND, NAD)
Ssame as for DSNDM but for truth model and common
blocks /NDIMT/ and /TRUMTX/ are used.

ZMATIN (A, NR, NC, 132)
Routine 'ZMATIN' is used to read in matrices
entered by specifying the element address (row,
o column) and value. If an entry is attempted that
' is not in array bounds, a message is printed and the
entry not accepted. A row entry of zero signals
end of array entries.
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“A": Input/output array in full storage mode.

"NR": Input integer scalar specifying row dimen-
sion of A.

"NC": Input integer scalar specifying column
dimension of A.

"IzZ": Input integer scalar affecting execution
of ZMATIN. For IZ positive, matrix A is
first zeroced. For 1Z negative, A is
constrained to be symmetric.

WFILED (NT, NP, ND, A)
Routine 'WFILED' is used to write data to the SAVE
file. It executes four writes: (1) a pair of
integer scalars specifying the data code and the
number of data points; (2) an integer vector of
length ten with the dimensions of the model in data;
(3) a real vector containing data arrays; and (4) a
pair of integer scalars, the first indicating end
of data on SAVE file, the second a dummy. The end
of data code (-1) is written on SAVE initially by
CGTXQ; each execution of WFILED begins with a
"backspace" on SAVE to allow the already existing
end of data code to be overwritten. This ensures
that the SAVE file data entries can be successfully
read when used as a DATA file.

"NT": Input integer scalar data code. Values
of 1, 2, 3, or 4 correspond to design
model, command model, truth model, or PI
gains, respectively.




] "NP": Input integer scalar specifying number of
data elements in data vector.

*ND": Input integer vector of dimensions.
"A": Input real vector storing data to be
saved.

READFS (A, ND, NT, IERR)
Routine 'READFS' reads data from the DATA file which
was written by WFILED. It searches the DATA file
for the code of the data set it is to read. If the
data set is found, a call to ‘'FARRAY' reads the
data. If not found, a message is written and an

error flag set. '
; "A": Output real vector of array data.
"ND": Output integer vector of dimension data.
‘ 1] . 3
"NT": Input integer scalar specifying data set

code (as for "NT" in WFILED).

"IERR": Output integer scalar error flag set non-
zero if data set is not found on DATA
file.

FARRAY (A, ND, NP)
Routine 'FARRAY' reads data sets from the DATA file.

"A": Same as "A" in READFS.
[
"ND": Same as "ND" in READFS.
"NP": Input integer scalar specifying number of

data elements in data vector A.
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TFRMTX (X1, X2, NR, NC, ITX)

Routine ‘TFRMTX' transfers matrices between storage
locations in cases when one matrix is in full
storage mode and the other is in variable storage
mode. The transfer can be in either direction as
determined by an input argument.

"X1": Input/output real array in full storage
mode. It is allocated (NR-by-NC).

"xXa": Input/output real array in variable
storage mode. It is allocated (NDIM-by-
NDIM) but contains an array sized (NR-by-
NC) . Note that "NDIM" is the row dimen-
sion specification of /MAIN1l/.

"NR": Input integer scalar row dimension.
"NC": Input integer scalar column dimension.
"ITX": Input integer scalar controlling the

direction in which the matrix transfer
takes place. For ITX=1l, X2 is the input,
X1 is the output, and the (NR-by-NC)
sub-array of X2 is stored in Xl1. For
ITX=2, X1 is the input, X2 is the output,
and the matrix X1 is stored as an (NR-by-
NC) sub-~array in X2.

MATLST (A, NR, NC, NT, KDEV)

Routine 'MATLST' is used to output arrays in full
storage mode. A name is printed specifying the

array.




Ry

"AY: Input real array in full storage mode.
"NR": Input integer scalar row dimension of A.
f
% "NC": Input integer scalar column dimension of
, A.
3 "NT": Input integer scalar with an array name

of three or fewer characters.

"KDEV": Input integer scalar output device number.

NDSCRT (A, N, NTERMS)
Routine 'NDSCRT' computes the number of terms to be

used in computing a state transition matrix using

a series expansion. It uses a method suggested in
Reference 11 (but with a maximum of 30 terms in

the expansion because a temporary vector in DSCRT has
its dimension fixed at 30). The number of terms is
selected to achieve a truncation error of less than

1.E-6.
"A": Input real array.
"N": Input integer scalar dimension of A.

"NTERMS": Output integer scalar specifying number
of terms to be used in expansion approxi-

mating eéT.

RQWGTS (W, ND, NP)
Routine 'RQWGTS' is used to enter the diagonal
elements of the quadratic weighting matrices or
noise covariance matrices. Elements are specified
using a single index for the diagonal element and
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the value of that element. The index is tested for
being in array bounds, and negative entries for
diagonal elements are not accepted. For either
error a message is written. A diagonal index of
zero signals that entry is complete. Elements are

tested for proper sign according to argument "NP".

"W": Input/output real array whose diagonal
elements are to be set.

7 "ND": Input integer scalar specifying the row
% dimension of the array within which W is
: stored.

f "NP": Input integer scalar used to determine

!

sign test for diagonal elements. If zero,
; diagonal elements may be greater than or
equal to zero. If NP is non-zero,
diagonal elements must be positive.

DVCTOR (N, A, V)
Routine 'DVCTOR' extracts the diagonal elements of

an array and stores them in a vector.

! "N": Input integer scalar dimension of input
k array.
S
E "A": Input real array.
i
% "V Output real vector of diagonal elements
of A.

POLES (A, N, ITYPE, ZMl, ZIM2)
Routine 'POLES' computes the eigenvalues of the
input matrix using 'EIGEN' of LIBRARY. For the
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design, command, and truth models it computes the
poles of the continuous-time system model. For the
PI and filter closed-loop systems, it computes the
discrete~-time poles then calls 'MAPOLE' to map them
; to the primary strip in continuous-time. The con-

s

tinuous or pseudo-continuous~time poles are printed
along with a title identifying the system.

‘- "A": Input real array. i
: "N": Input integer scalar dimension of A.
; ITYPE": Input integer scalar indicating system
% represented by A. Values of 1 to 5 refer
¥ to the design, command, or truth models,
? the closed-loop PI, or filter systems,
respectively.
: "ZMl", "ZM2": Input real arrays used for temporary |
4 storage.

MAPOLE (N, 2R, 2I, T)
Routine 'MAPOLE' is used to map the poles of a
discrete-time system to the primary strip in the

oy mee var T, e

! continuous domain (Ref 28). Denote the real (o)
A and imaginary (w) parts of a discrete-time pole

as zp and gz, respectively. MAPOLE uses the follow-

g. : ing equatiois: |
v' : z, = zi + zi (A-73a)
| g o= LOGe(zm)/T (A-73b)
w = TAN " (ap/zg) /T (A-73c)
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where T is the controller-filter sample period and
0 and w are the corresponding mapped real and

imaginary parts of the pole. These computations

are performed for each system pole.

} "N": Input integer scalar number of eigen-
: values.
"ZR": Input/output real vector of real com-

ponents of poles (zp).

"ZI": Input/output real vector of imaginary
components of poles (zI).

R A

nqe . Input real scalar controller-filter’
sample period (T).

LADDR (NR, I, J)
Function routine 'LADDR' computes the single index

G T AT e T e iy v eyt

address of an element specified by a (row, column)

address within an array. That index value is
stored in function name LADDR.

B v

. "NR": Input integer scalar row dimension of
array within which an address is sought.

"I": Input integer scalar element row address.
"J": Input integer scalar element column 1
|
address. f

. FTMTX (X, Y, NR, NC)
Routine 'FTMTX' transfers one array to storage in
another when both are in full storage mode.
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"X": Input real array whose elements are to
be stored elsewhere.

"y": Output real array containing same ele-
ments as X.

"NR": Input integer scalar row dimension of
X,Y.

"NC": Input integer scalar column dimension of }
X,Y.

FMMUL (X, Y, NR1l, NCl, NC2, 2)
Routine 'FMMUL' computes the product of two matrices.
All matrices are in full storage mode.

-

i "X": Input real array dimensioned (NR1l-by-NCl). ]

? "Y' Input real array dimensioned (NCl-by-NC2).

E "NR1": Input integer scalar row dimension of X.

; - 1
"NC1": Input integer scalar column dimension of

; X and row dimension of Y.

"NC2": Input integer scalar column dimension of
Y.
"Z": Output real array formed as product of

X and Y and dimensioned (NRl-by-NC2).

- o - At -

‘7 FTMUL (X, Y, NRl, NC1l, NC2, 2)

[ Routine 'FTMUL' computes the product of one matrix
with the transpose of another. All arrays are in

% full storage mode.
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"Xns Input real array dimensioned (NRl-by-NCl).

"y": Input real array dimensioned (NRl~by-NC2).

"NR1", "NCl1l", "NC2": Input integer scalar dimen-
sions.

AU Output real array formed as product of

gT with ¥; it is dimensioned (NCl-by-NC2).

FMADD (X, ¥, NR, NC, Z)
Routine 'FMADD' computes the sum of two matrices.
All matrices are in full storage mode. Either
input matrix can be equivalent to the output

T AR WeEe e

matrix.
"X": Input real array dimensioned (NR-by-NC).
; "Y"v: Input real array dimensioned (NR-by-NC).

"NR", "NC": Input integer scalar dimensions.

< e e e

"Z": Output real array formed as the sum of X
and ¥ and dimensioned (NR-by-NC).

ZPART (A, NR, NC, ND)
Routine 'ZPART' is used to store zeros in a parti-
tion of a matrix which is itself in full storage
mode.

"A": Input/output real array of row dimension
"ND"; the first element of A is the start-
ing location of the partition to be
zeroed.
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“NR" : Input integer scalar row dimension of the
partition.

"NC": Input integer scalar column dimension
of the partition.

"ND": Input integer scalar row dimension of the
' input matrix A.

SUBI (A, NR, ND)
Routine 'SUBI' is used to subtract an identity
matrix of appropriate dimension from a square parti-
tion of a larger matrix in full storage mode.

A" Input/output array of row dimension "ND";
the first element of A is the starting
location of the square partition.

"NR": Input integer scalar dimension of the
square partition.

“"ND": Input integer scalar row dimension of the
input matrix A.

WPLOTF (V, N)
Routine 'WPLOTF' writes a vector to the PLOT file.

"y Input real vector.

"N": Input integer scalar dimension of V.
RPLOTF (V, N, IERR)

Routine 'RPLOTF' reads a vector from the PLOT file.

If an "end-of-file" is encountered in the read an

error flag is set.
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B AL Output real vector.
"N": Input integer scalar dimension of V.

"IERR": Output integer scalar error flag. IERR
is non-zero if an error occurred.

STRPLT (A, V, NS, NV, NP, NVO)
Routine 'STRPLT' extracts specific elements from
an input vector and stores them in an output vector.
It is used in preparing sets of variables for

: plotting.

. "A": Output real vector into which elements

¥ are stored.

% "v": Input real vector some of whose elements

: are extracted for storage in A.

? "NS": Input integer vector of addresses where

‘ variables are to be stored within A.

§ "NV Input integer vector of element addresses
of variables in V which are to be extracted.

: "NP": Input integer scalar specifying number of

! variables to be extracted from V.

i :

~ "NVO": Input integer scalar length of vector V.

E It also locates the storage of the time

; variable in V (time is the last element
¢ of V).

el "
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PLOTLP (N, M, A, IPSC, ISCL, LPTERM, NDEV, ITITLE)
. Routine 'PLOTLP' creates line printer plots. As

many as five dependent variables may be plotted
with respect to a single independent variable.

Every sample of the independent variable is plotted,
and runs lengthwise on the output listing. The
dependent variables are plotted over a field either
50 or 100 print positions in width and may be
unscaled, scaled individually, or scaled separately.
Each dependent variable is plotted with an integer
identifier (1 to 5). The range of the plot is
printed with subdivisions, and if independent
scaling is used multiple ranges are printed and
marked in correspondence to the plot symbol of the
variable to which it pertains. Header comments in
the source listing define all arguments explicitly.
Those descriptions will not be repeated here.

VARSCL (XMIN, XMAX, SCALE, RSPACE, ISCL)

Routine 'VARSCL' is used by routine PLOTLP to
achieve scaling of the plot variables. It can give
either exact scaling so that the full range of the
variable is used or a "nice" scaling with upper and
lower values of the range and the scale increment
all simple numbers. In the former case maximum
resolution is achieved but computation of inter-
mediate values in the range involve numbers that
require many digits to specify. In the latter case,
resolution may be lessened but the computations to
determine intermediate values are simpler. Equal
scaling is achieved by scaling over the combined
range of all variables.
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"XMIN": Input/output real scalar giving the mini-
mum value of the variable.

"XMAX": Input real scalar giving the maximum value
of the variable.

"SCALE": Output real scalar giving the scale size
of each print position in the range.

"RSPACE": Input real scalar specifying the number
of print positions in the plot range.

"ISCL": Input integer scalar indicating if exact

-

or "nice" scaling is to be used. ISCL
non-zero gives "nice" scaling.

A.l1l2 LIBRARY Routines

S et S YN

Many routines of LIBRARY are called by CGTPIF.

Many others are invoked by those which are explicitly

SRR i i Maaa X L TS R

4 called. For descriptions of all the LIBRARY routines see i
Reference 24. Some general considerations in using these

routines will be discussed here.

- P

In essence, the LIBRARY package of routines k
assumes that arrays used in its computations are in vari-
able storage mode within larger square arrays of dimension
NDIM (NDIM is an element of /MAIN1l/). Because of the

method of array storage in FORTRAN (column-major storage)

in most cases only the allocated row dimension of all

-

arrays involved in computations must be identical. During

some operations involving matrix transposes, the allocation
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must actually be square for the matrix which is trans-

posed.

Thus, in all execution of CGTPIF other than 'MAIN',
NDIM at any specific time is set to the row dimension of
the allocation in which relevant arrays are effectively
stored for the computations currently using LIBRARY
routines. The variable "NDIM1" of /MAINl/ is simply the
value of NDIM plus one. Both NDIM and NDIMl are used by
the routines of LIBRARY to locate specific elements of
arrays.

Sometimes arrays involved in LIBRARY calls are row
dimension compatible in their existing storage mode. At
other times some arrays must be moved to a variable storage
mode of row dimension equal to that of the largest array
to be used so that all arrays involved in a computation
are effectively stored in arrays of equal allocation dimen-
sions.

CGTPIF does a great deal of array manipulation.

The routines of the LIBRARY -,rovide very useful capabili-
ties and should be used when possible. However, the pro-
grammer should be very careful to deal properly with array
storage in attempting modification of CGTPIF or calls to

LIBRARY from optional routines. It is easy to be correct,

but it is also easy to be incorrect since programmers
typically are unaccustomed to the manner in which FORTRAN

stores arrays.
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A.1l3 Array Starting Addresses

Throughout CGTPIF arrays are referenced in terms
of single index addresses. These may be the starting
addresses of arrays within larger vectors or may be .
addresses of specific elements of arrays. With the spe-

cific exception of the variables in /DESIGN/, essentially

all variables used in CGTPIF conform to the following con-
vention: variable names beginning with the character "L*"

refer to array address indexing. Many such index variables g
are of temporary use only and can be evaluated in the con-

text of the source code where they occur.

oy

The starting addresses of all arrays preserved in

Common storage are stored in variables of associated

R o 0]

Commons. These starting address Commons are described
below. 1In all cases, arrays are stored in the associated
vector storage area in the same order in which their

; starting addresses occur in the corresponding address
Commons. In identifying array addresses below, the equa-
tion number in which each array is defined is given in

parentheses to the right of the array name.

/LOCD/ LAP, LGP, LPHI, LBD, LEX, LPHD, LQ, LON, LQD, .

LC, LDY, LEY, LHP, LR 1

Address Common /LOCD/ is associated with /DSNMTX/
(see Sections A.6.4.1 and A.7.1) and specifies

starting addresses within vector "DM" as follow:




I
“"LAP": A, (A-19a) i
"LGP": S, {(A-19c¢)
"LPHI": ¢ (A-22a)
i "LBD": By (A-22Db)
"LEX": E (A-22a)
"LPHD": % (A-22a)
IILQII= g (A_3a)
"LON": Q (A-3b)
"LQD": Q (A-21c)
4
; "LC": c (a-23c)
‘ "LDY": D, (A-23c)
f "LEY":  E, (A-23c)
13
i "LHP": H, (A-24)
; "LR": R (A-24) !
i
: /LOCC/ LPHC, LBDC, LCC, LDC 1
- Address Common /LOCC/ is associated with /CMDMTX/
' (see Sections A.6.4.1 and A.7.3) and specifies array
; starting addresses within vector "CM" as follow:
' "LPHC": 0 (A-25a)
"LBDC": Bm (A-25b)
] d
: "LCC": C (A-26a)
i —m
| "LDC": D (A-26b) i

: /LOCT/ LPHT, LBDT, LQDT, LHT, LRT, LTDT, LTNT
{ ; Address Common /LOCT/ is associated with /TRUMTX/
| (see Sections A.6.4.1 and A.7.2) and specifies
starting addresses within vector "TM" as follow:

87




"LPHT":
"LBDT":
"LQDT":
"LHT":
"LRT":
"LTDT":

"LTNT":

(A-28a)

(A-28Db)
(A-28c)
(A-7Db)
(A-8b)
(A-7c)

(a-74)

/LCNTRL/ LPIll, LPIl2, LPI21, LPI22, LPHDL, LBDL
Address Common /LCNTRL/ is associated with /CONTROL/
(see Sections A.6.4.2 and A.11.3) and specifies

starting addresses within vector "CTL" as follow:

"LPI11l":
"LPI12":
"LIP21":
"LIP22":
"LPHDL":

"LBDL":

T11
T2
I
T22
2

Bs

(A-29b)
(A-29Db)
(A-29b)
(A-29b)
(a-30a)
(A-30Db)

/LREGPI/ LXDW, LUDW, LPHCL, LKX, LK2Z
+ Address Common /LREGPI/ is associated with /CREGPI/
(see Sections A.6.4.3 and A.11.4) and specifies

starting addresses within vector "RPI" as follow:

"LXDW" :

f "LUD [1] 2
"LPHCL":
[1] LKx ” e

"LK2":

g: =<

=
x

-2

6CL

(A-32a)
(A-34)
(A-44)
(A-48a)

(A-48Db)
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/LCGT/ LAll, LAl3, LA21, LA23, LAl2, LA22, LKXAll,
LKXAl2, LKXAl3
Address Common /LCGT/ is associated with /CCGT/
(see Sections A.6.4.4 and A.11.5) and specifies
starting addresses within vector "CGT" as follow:

"LAll":  A;; (A-51a)

"LA13": A4 (A-51c)

"LA21": A, (A-514)
| "LA23": Ay, (A-51f)
; "LAl2": A, (A-51b)
5 "LA22": A,, (A 5le)
"LKXAl1": K (A-53a)
g "LKXAl2": gxm (A-53b)
§ "LKXAl3": gxu (A-53c)
£ n

, /LKF/ LEADSN, LFLTRK, LFCOV

i Address Common /LKF/ is associated with /CKF/
(see Sections A.6.4.5 and A.11.7) and specifies
J starting addresses within vector "FLT" as follow

b "LEADSN": & (A-2la)

"LFLTRK": Kg (A-59)

"LFCOV": \/Ea(i,i) (A-58)
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Appendix B

CGTPIF User's Guide

B.l Introduction

CGTPIF is an interactive program for designing
"Command Generator Tracker" control systems. It provides
three design options: (1) design of a Proportional-plus
Integral (PI) regulator; (2) design of an open-~loop (CGT)
or closed-loop (CGT/PI) Command Generator Tracker con-
troller; and (3) design of a Kalman filter. These provide
the component designs for the final controller, to be
implemented as a Command Generator Tracker, with an inner-
loop Proportional-plus-Integral regulator, and a Kalman
filter for state estimation (CGT/PI/KF). Corresponding to
each design option is a set .of routines for evaluation of
the guality of the design. During program execution, any
of the design paths can be pursued in any order and as
often as desired.

This "User's Guide" discusses CGTPIF as an exist-
ing program (as it executes under CYBER INTERCOM) and with
the intention of providing information appropriate to suc-
cessful execution when applied to the user's design prob-
lem. It discusses program operation from the input/output

(I1/0) perspective: the specific input and output of each




design/evaluation path and the terminology employed in
each input/output item. It also discusses what the user
must do both before and immediately following program exe-
cution. Users interested in more detailed information
about the operation of the program should refer to the j
“"CGTPIF Programmer's Guide” (Appendix A).

¥ B.2 Preparation Prior to
Program Execution

B.2.1 Determine Dynamics Models. CGTPIF employs

three dynamics models for the system design: a "design"

model, a "truth” model, and a "command” model. It is
necessary that the user determine the dimensions and

parameters of these models prior to execution of the pro-

gram. The specific models needed by each design vary, and
only those needed to execute the design paths of interest
need be known.

At a minimum, the design model must be known in

order to execute any of the designs. The truth model is

F A g T SR TR EITI T © S TR TR S S 0T RSN Y

-

required for evaluation of the Kalman filter (to perform a

covariance analysis) and is optional for evaluation of the

PI regulator or CGT and CGT/PI controllers. The command

L e e

1 : model must be known in order to effect either CGT or
A
: ] -‘ CGT/PI designs.

The dynamics models are entered into the program

Cmm—— w e

during execution as needed and under input prompting pro-
’ vided by CGTPIF. The models will be discussed in detail

in the next section of this user's guide.
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B.2.2 Define Objectives and Specifications.

Before embarking upon design of the controller, the
designer should define: (1) the objectives which are to be
sought, and (2) appropriate specifications and constraints
: to apply to the controller. These may be rather loosely

defined initially, then become more specific and firm as

the design progresses.
f Objectives will vary with the problem under con-
sideration but might be exemplified by formulation of a
desired controlled output response behavior. For example,
one's objective might consist of achieving decoupled, first-
order responses with specified characteristics for each ]

controlled output of a given multi-input multi-output

(MIMO) system.

Specifications and constraints derive from the
problem application and from the objeétives for the design.
Typical considerations include time-delay, overshoot, and
settling time of the response, and input magnitude and rate

limits.

TN SIS e O ECemTIC SIS P S B T O PO WA Sl S SICIRTIN ST T SN e e

1 K B.2.3 Determine Appropriate Initial Quadratic

Weights. Execution of the PI regulator design entails

8
e e ——

entry of quadratic weights for the optimal cost function.
Such weighting matrices are required for the outputs, the
input magnitudes, and the input rates (Ref 32; see also
Section 3.4.2 of this thesis). For these, only diagonal

‘ elements are required as input since CGTPIF assumes them

o2 |
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to be diagonal matrices. However, after CGTPIF computes
the resulting augmented state and input magnitude weighting
matrix (eguation (A~33)), the user may modify any element

of it to achieve design goals.

Although final selection of appropriate quadratic
weighting values to achieve design requirements is achieved
in an iterative (trial-and-error, hopefully with insight)
fashion, it is possible to make initial choices which are
plausible. A common method for determining initial
quadratic weights involves inverse square weighting of
maximam deviations of outputs and inputs to achieve regula-
tion for an assumed perturbation of the system (Refs 2; 29;
32) . For example, the diagonal output weighting matrix
element Y, . would be Yii=l./(maximum allowable yi)z.

Beginning with the initial set of quadratic weights,
the PI design path is executed repeatedly with changes in
the choice of weighting elements until the design is satis-
factory. CGTPIF provides information during execution
which allows the design to be evaluated and iteration of
the design to be pursued effectively.

For open-loop CGT designs and Kalman filter designs,
preparation consists of defining the various dynamics
models. The open-loop CGT design depends only on the design
and command models. The initial execution of the Kalman
filter design path depends only on the design model (and

truth model for evaluation). Further refinements to either
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design are achieved through modification of the appropriate

dynamics model (command or design).

B.3 Definition of the
Dynamics Models

Each of the dynamics models entered into CGTPIF
is represented by a set of continuous-time state differen-
tial equations. A summary description of each model is
given here, while more detail appears in Appendix A. The
names used in the equations to follow are exactly those
used by CGTPIF in reference to these same dimensions and
arrays in its I/0. Note that here each name is a single
character, possibly subscripted, while in its I/0, CGTPIF
incorporates subscripts into the name (e.g., At becomes
"AT"). Constraints on the models that are mentioned below
are tested by CGTPIF and if not satisfied, a message is

written to the user terminal and execution is aborted.

B.3.1 Design Model.

g(t) Ax(t) + Bu(t) + E n.(t) + Gw(t) (B-la)

fy(t) = An, ny(t) + G w,(t) (B-1b)

x(t) g:(t) + D u(t) + Ey_d(t) (B-1c)

%(ti) §:(t ) + Hn (t ) + v(t ) (B-1d)
and

E{g(t)gT(t+'r)} = Q6(1) (B-2a)
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E{ga(t)gg(t+1)} =g 8(1) (B-2b)

T
E{g(ti)g (tj)} = RS

i3 (B-2¢)

In these equations, x, u, Bd’ Y. and z are the system

state, input, disturbance state, output, and measurement

vectors, respectively.

In input prompts, CGTPIF refers

to the diagonal elements of the noise covariance matrices

as
Q: "state noise strengths"” (B-3a)
Q. "disturbance noise strengths" (B-3b)
R: "measurement noise strengths” (B-3c¢)

Note that Q, Q@

» and R are all assumed to be diagonal

matrices. The dimensions of the model are

n = number

number

a1
]

= number
number

number

€ 3 O
"

= number

= number

YD

and the dimensions of the matrices of the model are

of
of
of
of
of
of
of

system states

system inputs

system outputs

state measurements
disturbance states
independent system noises

independent disturbance noises
(B-4)
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CGTPIF requires that the numbers of design systems

inputs and outputs be equal: r=p. Also, the number of sys-

tem states may not be less than the number of disturbance

states, due to the computational setup used for the CGT
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solution (see Section A.7.l1). The dimensions n, r, and p

must be non-zero; any of the other dimensions may be zero. i

T e

L ¢ S

If m is zero or if w and wD are both zero, the Kalman

filter design path cannot be pursued. Matrices having

L3
o

O

TE
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either dimension zero, do not exist and are not entered.
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& B.3.2 Truth Model.
E
3 3 %t“‘) = A.x, (t) + B,y (t) + G,w, (t) (B-6a)
r‘ |
ii : 2, (t) = t_t(t ) + Y, (t;) (B-6b)
y :
‘ 4 x°(t) = Tp,x, (t) (B-6¢)
f . i
i X i
i ngt(t) = Togx, (t) (B-64) ‘
f and
E' : E{gt(t)yz(t+t)} = Q,8(1) (B-7a)
T - -
E{gt(ti)gt(tj)} = gtéij (B-7b)

Note that Q, and R, are both assumed to be diagonal

B T R

' § matrices. In these equations, 51__, u, . and Ze are the truth

model system state, input, and measurement vectors, respec-

tively. The vectors x” and are as defined for the

g

design model.

The dimensions of the truth model are

LR L S 1T R SO S e g © T AN,

Ny = number of system states

r rp = number of system inputs

! m, = number of system measurements i
Vip = number of independent noises driving system

dynamics
(B-8)

g o g

and the dimensions of the matrices of the model are

-




(B-9)

CGTPIF requires that the numbers of inputs and of
measurements for the truth and design model be the same:
L =T and m,=m. If the number of driving noises (wT) is
zero, evaluation of a Kalman filter design is not pursued

(since a covariance analysis with no truth model driving

b
TR e T AT MM STIVTRERN . YT TR AT

noise would not be very informative). Matrices having

either dimension zero, do not exist and are not entered.

B.3.3 Command Model.

e T——y gt

i f, % (t) = A x (t) + Bu (t) (B-10a)

S y () = C x () +Du (t) (B-10b)

. { .

;£~ ? In these equations, Em' Em' and xm are the command model

*fﬁ i state, input, and output vectors, respectively.

ol The dimensions of the command model are {

ny = number of model states

Iy = number of model inputs

‘ Py ™ number of model outputs (B-11)
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and the dimensions of the matrices are

: nM-by-nM

Byt PuPY"Ty
C_: pM-by-nM

. TP Wy e e e e

é :
! D : Py bY-r, (B-12)
'

: % CGTPIF requires that the number of outputs of the
34

i command and design models are equal: Py~P- Also, the

o

—cea,

number of system states of the command model (nM) cannot

E
i be greater than the number of system states of the design

model (n). This constraint is due to the setup for computa-

WLV

]

?
; tion of the CGT solution (see Section A.7.3).
3

B.4 File Usage

In addition to the input/output (I/0) communication

directly with the user terminal, CGTPIF employs four disk

files for I/0 purposes. One of these ('PLOT') is for

el

2L R Al

3

:

E temporary use by CGTPIF only. The other three files

g ('SAVE', 'DATA', and 'LIST') benefit the user by providing
? continuity between distinct executions of the program
(SAVE, DATA) or provide supplementary design output data

(LIST).

B T4 A i Lt S 15alvv—='v-ﬂ=
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B.4.1 SAVE and DATA Files. CGTPIF preserves

e &R

information for use in distinct executions of the program

through use of the SAVE and DATA files. During program
execution, the dynamics models as well as the PI regulator
gains (if available) may be written to the SAVE file.
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- operations on these files include:

Following execution, the user may wish to catalog SAVE
as a permanent file. In subsequent executions, CGTPIF may
(at the user's option) read any of the dynamics models or
PI gains from the file named DATA.

Both files are rewound prior to and following

program execution. Letting the abbreviations "BE" and "AE"

mean before and after execution, respectively, typical

1. Catalog SAVE file:

a. BE:REQUEST,SAVE,*PF |
AE:CATALOG,SAVE,pfn

b. AE:REQUEST,DUM,*PF
AE :COPYBF, SAVE,DUM
AE :CATALOG,DUM,pfn
2. Attach DATA file:
BE:ATTACH,DATA,pfn

3. Reuse SAVE file as new DATA file

AE:RETURN,DATA
BE :COPYBF,SAVE,DATA (B~13)

None of these operations are required; they are simply
useful operations in the event the user chooses to employ

the files to streamline repeated executions of a given

design problem. Note that SAVE and DATA are local file
names and that the permanent file names are represented
here by the abbreviation "pfn". Other operations (e.qg.,
PURGE) and other combinations of operations are possible
as for any files, and the usual rules for these opera-

tions apply here as well. The essential points to under-

stand are that the SAVE file is created by CGTPIF and is an
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output file only, and that DATA is a previously SAVE'd
file under a new local file name and is an input file
only. During a single program execution the two files are

distinct and these roles cannot be changed.

B.4.2 LIST File. During program execution,

? H extensive design information is output to the LIST file.
‘ i After execution is complete, the user may wish to route
LIST to a line printer for listing (or it may be "PAGED"
at the user terminal). The file is rewound before and
after execution. To send LIST to a line printer, the

following command is used after execution:

ROUTE, LIST,DC=PR,TID=nn,ST=CSB,FID=abc (B-14)

A AXTRIRPR P TR PP ST W < A

in which "nn" is the identification number of the terminal
to which the file is to be sent (for AFIT, nn=91), and

"abc" is any three character output banner for the listing.

B.4.3 PLOT File. The PLOT file is used internally

TS T T AT TR (YT

by CGTPIF for temporary storage of the variables generated
by time response evaluations of the controller or filter.
If desired, it may be eliminated following execution using

the command:

RETURN, PLOT (B-15)

S oy o
— ,,.;;...;..ﬁ.‘.u.....-.....*‘.,-
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B.5 CGTPIF Execution

B.5.1 Overview. An important feature of CGTPIF
is that it follows appropriate paths through execution
automatically, prompting the user for input as necessary.
The basic design paths are selected by the user under
prompting, but within a given path, only information needed
to execute the specific design and evaluation is requested
by the program. The user thus does not need any predeter-
mined sequence of command entries to the program, nor are
the commands coded in any way.

Figure B-1l gives a general flowchart of CGTPIF.
The first direct input into the program is the sample
period (in seconds) of the digital controller. Each of the
decision blocks (diamond shaped) represent a prompted
request for input to choose the design to be pursued.
Each rectangular block with an alphabetic character ("A"
through "G") in the lower right corner represents a "compu-
tational element" of CGTPIF and is discussed individually.

The block labeled "Establish Design Model [A]"
is a specific instance of the usage of a set of routines
employed in establishing all three of the dynamics models.
The command model is established in the design path of the
CGT controller. The truth model is established just prior
to the controller or filter evaluation blocks. Although
the specific I/0 messages differ in content for each model
established by this computational element, the kinds of

1/0 are the same.
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Fig. B-1. CGTPIF General Flowchart

103




The subsections which follow discuss the I/0 of

each computational element. In identifying items of

I/0, reference will sometimes be made to array names and
equations which are specified in the "Programmer's

Guide" (equation references will be in parentheses follow~
ing the array name). All prompts for input define the input

that is being requested and the manner in which the entry

suge s - testamr. e
PRA 4

should be given. Since the actual prompts are themselves
understandable, they will not be quoted here. Instead,
flowcharts will be used to show where prompts occur and how
execution depends on user entries. Blocks involving I/0
will be identified by function: an "I" block will signify

prompted input from the terminal; an "OT" or "OL" block

v RN TR T TR AR | TNE e

will signify output to the user terminal or LIST file,
respectively. All output to LIST is separated and iden-
tified according to the computational element which

generated it.

By v mr——y * YO

B.5.2 Types of Entries. Required inputs may

R

entail entry of a decision logic value, a single numerical

or character value, or multiple numerical values for

a [
e s b oy e o

arrays or vectors. In all cases, CGTPIF prompts the user
with messages identifying the nature of the input requested

and each prompt ends with the character ">".

B.5.2.1 Decision Logir. All requests for deci-
sions affecting execution are framed as questions requiring
a YES ("Y") or NO ("N") response. The user entry is read

104
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as character input. Execution proceeds according to a
default "YES" assumption: all decision tests assume that

if the answer is not "NO"”, then it is "YES".

B.5.2.2 Single Entry. Requests requiring single

entry responses always specify the variable requested.
If there are constraints on acceptable input they are
indicated in the prompt and adherence is tested in the
program after entry. If the entry is not "valid," a
message is written to the terminal and the prompt is

repeated.

B.5.2.3 Multiple Entry. All requests for entry

of vector or array elements specify the name of the array
in question and its actual dimensions. Entries for vector
elements include an integer specifying the index of the
element, and a real specifying its value. For most arrays,
all elements may be given values, while for some square
matrices, only diagonal elements may be set. In the usual
case, elements are entered into arrays by specifying two
integers for the [row,column] address and a real for the
value of that element. In cases in which only diagonal
elements can be specified, entry is the same as for vectors,
with the matrix diagonal considered a vector.

As many entries as desired may be made and any
entry can be repeated (e.g., to correct previous erroneous
entries). Entry is terminated by specifying a row index
of zero. Each entry is tested to verify that it lies
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within the [row,column] bounds of the array (vector). 1If
an index is not "valid"”, a message is written to the
terminal indicating the error and the initial prompt with
the array dimensions is given again (previous valid
entries are not affected, only the specific invalid entry
is rejected). If an entry is valid, the element value

is set and the next entry is awaited without additional
prompting. For example, if it is desired to set a square
matrix of dimension three to an identity matrix, then
according to whether the specific matrix is to be entered
in [(row, column] or diagonal form, entries would be as
follow:

l. For [row,column]) entry format

111. (enter)
221. (enter)
331. (enter)
0/
2. For diagonal element entry format

11, (enter)
2 1. (enter)
3 1. (enter)
0/

Items of information may be separated by one or more blanks
or by a comma. These entries set specific elements of the
matrix to non-zero values, where it has been assumed (as

is generally the case) that the matrix was initialized

automatically with all elements zeroed.
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B.5.3 Establishing Dynamics Models ("A"). All

three dynamics models (design, truth, and command) are
entered under the control of a single set of routines.
The options for entry and the type of 1I/0 involved for
each is of identical format, but prompts and output employ

terminology specific to each model to identify items of

I/0.

Figures B-2a,b,c give flowcharts of the I/O
involved in entry of the models. Note that any of the
dynamics models may be entered in any of the following
ways:

1. The dimensions and array elements may be read

from the DATA file.

2. The dimensions and array elements may be
entered from the user terminal as prompted by CGTPIF.

3. The dimensions and array elements may be
determined by user-provided subroutines.
These modes of entry are offered by CGTPIF in the order
above with option 3 assumed selected if options 1 and 2
are declined. 1If option 1 is selected, the reading of the
model is automatically performed. If the model is found
not to exist in the DATA file, the other options are

offered. For option 3, if the subroutines needed to define

the model are not loaded, options 1 and 2 are offered again.
This logic is illustrated in Figure B-2a.

Prior to entry of the model matrices, all matrix
elements are initialized to zero. Using option 1, all
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array elements are then read automatically from the DATA
file. For options 2 and 3 only the non-zero array elements
must be established.

Figure B-2b illustrates model definition under
option 2. Entry of the dimensions and arrays is according
to prompts by CGTPIF. The dimensions are requested first
by the names and in the order of equation (B-4), (B-8),
or (B-11), as appropriate. The arrays are then requested,
also by name and in the order of equation (B-5), (B-9),
or (B-12), as appropriate. An array is not requested if
its dimension is zero. Each prompt includes the actual
dimensions of the array according to the model dimensions
previously entered. Elements of arrays are entered by
address, and value by giving the [row,column] address and
element value as a three item input. Entry of a zero row
address terminates entry of the array.

For option 3, each model requires two user-
provided routines of prescribed names, argument lists,
and characteristics. These must be compiled with the main
routine of CGTPIF and a segmented executable object file
created. The "Programmer's Guide" describes the specific
requirements for the subroutines and the necessary pro-
cedure to obtain an executable CGTPIF program. The job
control sequence giving a segmented object file is shown
in Appendix E.

After a model is defined using any of the three
entry options, the user may list any matrix and modify
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any array elements, again under prompting by CGTPIF. If

a modification/list is desired, the names of the model's
matrices are listed at the terminal and the user specifies
the array of interest by name. Elements are entered by
address and value as described previously. Figure B-2c
illustrates the I/0 involved in modifying/listing model
arrays.

When the model has been defined to the user's
satisfaction, it may be written to the SAVE file by CGTPIF
if the user chooses. 1In the course of design iteration,
the truth and command models may be redefined if desired,
but only a single copy of any model may be written to the
SAVE file during a given execution of the program (CGTPIF
will not offer additional opportunities after a given'
model has been SAVE'd).

For each model, the discrete-time representation
is computed for the controller sample period specified.
Later computations do not depend on -the continuous-time
dynamics models, so the arrays defining them are not
retained.

Arrays defining both the continuous-time and
discrete-time models are given in output to the LIST file.
The specific output items, their names, and the reference
equations are listed below for each model (note that

equations (A-*) are from Appendix A):
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Design Model

Continuous~time model matrices as listed in

equation (B-5) discretized model matrices as:

"PHI": ¢ (A-22a)
n ", -
BD": By (A-22b)
"QD": Q (A-21c)
a3

[ ", -

"HA" : H (A-24)
“"EXD": E (A-22a)
"PHN": gn (A-22a)

Command Model

Continuous-time model matrices as listed in

equation (B-12) discretized model matrices as:

"PHM": & (a-26a)
BDM": gmd (A-26b)
" ", -
cM": S (B-12)
"DM" : D (B-12)

Truth Model

Continuous-time model matrices as listed in

equation (B-9) discretized model matrices as:

"PHT": &, (a-28a)

"BDT": B (A-28b)
d

"QDT": Q. (A-28¢c)
a

In addition, the eigenvalues of the system matrices
of each model (A, A, A, ) are computed and output both to
the user terminal and the LIST file. The system model is -
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identified by type (design, command, truth). Eigenvalues
of the corresponding discretized system matrices are not

computed.

B.5.4 Controller Setup ("B"). The "controller

setup” routines perform computations needed for the con-
troller designs. No input is required of the user and the
output is to the LIST file only. The output is, the

matrix Ii:
"PI": I (A-29)

B.5.5 PI Design ("C"). Execution of the PI

design path entails user entry of quadratic weighting
matrices defining the costs associated with output devia-
tions, control magnitudes, and control rates (see

Figure B-.):

"OUTPUT DEVIATIONS": Y (a-32a)
"CONTROL MAGNITUDES": Hy . (A-32b)
"CONTROL RATES": gc (A-34)

For each of these matrices, only the diagonal elements are
entered. On the first execution of the PI design, all
weighting matrices are initialized to zero. Subsequent
iterations preserve the elements of these matrices so
only desired changes in specific weighting elements need
be entered. Weights on output deviations should be

non-negative, while weights on control magnitudes and
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rates should be positive. Entries are tested for positive
or non-negative values as appropriate. If an entry is not
valid, a message is written to the user terminal and that
entry is not accepted.

Matrices Y and gy are used to compute a quadratic
weighting matrix on the state deviations (using an aug-
mented state vector composed of system state and control
magnitude perturbations from nominal). This new matrix
is referred to as "X" (equations (A-32) and (A-33)). The
user may then modify any element of X and/or list it at
the terminal. Elements entered into X are automatically
set symmetrically by CGTPIF but the sign of diagonal ele-
ments entered is not tested. X is not preserved between
PI design iterations, so any desired changes in elements
with respect to their values as determined from Y and gy
must be re-entered each design pass.

The diagonal elements of Y, gy, and gc are printed
at the user terminal and the entire Y, gy, U,, and X

matrices are output to the LIST file. Next, the regulator

gains and PI gains are computed. The PI gains are printed
at the terminal ("KX" and "KZ") and all gains are output

to the LIST file.

The outputs to the LIST file are,

"y, Y (A-32a)
"UM": U, (A-32b)
"X": X (A-33)
"UR": U (A-34)




"REG/PI GAIN MATRIX--GCS": Qé (A-46)

"KX": K, (a-48a)
"KZ": K (A-48b)

E =z
Note that the mnemonics "UM" and "UR" refer to input
? magnitude and rate weighting matrices, respectively.
When execution of the PI design computations is
{ complete, the "controller evaluation" set of routines is
automatically executed. These are discussed in a later

subsection as a separate computational element.

B.5.6 CGT Design ("D"). Execution of the "CGT

o

design" path requires that a command model be established.
I1f desired, a new command model can be established during

any iteration of the desiqn. The model is actually

T AT e e

entered using the routines described in Section B.5.3
above ("Establishing Dynamics Models"®).
If PI gains already exist in the program storage,

then a closed-loop CGT/PI design is effected automatically.

 AhMATIm L g P 0 S P T

If not, the user may elect to have the program read the PI

c

gains from the DATA file and design a closed-loop CGT/PI
controller. However, if the user chooses not to have the
gains read from DATA or if the gains are found not to exist
on the DATA file, an open-loop CGT design is effected

} automatically (by setting PI gains to zero), but only if
the open~loop system is stable. For either open-or closed-
t loop CGT design, the matfices éij (equation A-51) are auto-
matically output to the LIST file.
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Figure B-4 illustrates the I/0, logic, and computa-
tions of the CGT design path. Details involved in entering
the command model are given in Section B.5.3 and are indi-
cated in this figure by a block titled "Establish Command
Model". Note that since the continuous-time representation
of the command model is not preserved, "modification" of
the command model actually entails complete redefinition of
it. In case the command model exists on the DATA file and
only specific elements are to be changed, this can be
accomplished readily by reading the model from DATA and
then modifying individual arrays (as shown in Figure B-2c).

In establishing the command model, I/0 is as

described in Section B.5.3. Additional output to the LIST

file is,

"All": A, (A-5l1a)
"A21": A, (A-51d)
"Al2": A,, (A-51b)
"A22 A,, (A-51le)
"Al3 A, (A-51c)
"A23": BA,, (A-51f)
"KXM": K (A-53a)
"KXU": K (A-53b)
L] ", -

KXN": Exn (A-53c)

The controller gains ("KXM", "KXU", "KXN") are also

printed directly at the user terminal. Note that arrays

A,,, A,,, and K exist only if disturbance states are
=137 =23 ==,
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specifically modeled in the design model (gd of equations
(B-la,b)).

! When execution of the CGT design computations is
. ’ complete, the "controller evaluation" set of routines is
. automatically executed. These are discussed in the next

subsection.

R

B.5.7 Controller Evaluation ("E"). A single set

of routines performs the controller evaluation for both the

PI and CGT designs. For the PI controller, the poles of i

.

the closed-loop discrete-~-time system matrix EGCL (equation
{A-44)) are computed and mapped into the primary strip in

the continuous-time domain (the z-plane poles are not

listed in output). These mapped closed-loop poles are
printed both to the user terminal and the LIST file. The

primary evaluation tool for both controllers is a time-

response simulation. For the PI regqulator, the response
is taken for non-zero initial conditions (IC's) on the
states; for the CGT controller the response is given for i

a step input on any of the command model's inputs. 1In

VAT T TR, e~ £ NI SO PRERTTUGPTY © or™ g

)
. 1 ' either case, the system d&namics can be propagated using

e

the design model or truth model state transition equations.

NI

Time response runs may be run repeatedly for a specific
controller desigjn.

The I/0, logic, and computations involved in the

3
il
e O A

controller evaluation are shown in Figure B-5. Decision

| blocks labeled "CGT" test for the type of controller being i
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evaluated (CGT or PI). Decision blocks labeled "LTEVAL"

test if the truth model is being used to propagate system
dynamics (if not, the design model is being used).

The first prompt of the controller evaluation com-
putational element asks if the evaluation is to be con-
ducted with respect to (WRT) truth model dynamics. If
yes, the truth model may be established or modified (if
previously established) in the manner described in Section
B.5.3 above. Note that, since the continuous-time repre-
sentation of the truth model is not preserved within
CGTPIF, "modification" actually entails complete redefini-
tion of the model. In the case that the truth model exists
on the data file and only specific array elements are to be
modified, it is convenient simply to read the truth model
from the DATA file and modify matrix elements as shown
in Figure B-2c. If the truth model had been established
previously and no modification to it is desired, the
existing discrete-time representation of the truth model
is used. The design model is used to propagate system
dynamics if the truth model evaluation is not selected.

For the CGT evaluation, the first input prompt
is for the index of the command input vector to which a
step input is to be applied, and the magnitude of that
step (only one command input is allowed at a time).
CGTPIF tests the input index for validity (within vector
length bounds); if it is invalid the prompt is repeated.
If the index is zero (or negative) the input is not
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accepted and the user is queried as to whether time-
response runs are desired. If no time-responses are to be
run, the controller evaluation routines are exited; other-~
wise, the prompt requesting command model input specifica~-
tion is repeated. If the CGT controller response is to be
run, initial conditions on the system states may be
entered. If the design model is used for evaluation and
disturbance states exist in the model, they may be given
initial conditions also.

For the PI evaluation the first input prompt is

for IC's for the system states. The states that are

actually given initial values are those of the design or

IR Y TRy

¥ truth model, according to the model used for propagation
§ of dynamics.
Initial conditions are entered for either con-
E troller in the same manner. Entry is of the index of the
| state within its appropriate state vector (design or truth
2 model, or disturbance state vectors) and its initial
) value. Tests and termination of entry are as described

in Section B.5.2 for multiple entries.
' Time~response plots are of the "line printer”
type and are output both to the terminal and to the LIST
file. As many as two plots, each with as many as five
dependent variables, may be printed at the user terminal.
CGTPIF prompts the user to specify the number of variables
for each of the two plots (the user is to enter two

integers). If the user enters non-positive integers for
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both plots, then a prompt queries the user as to whether
time-response runs are desired. If no time-responses are
to be run, the routines are exited. Note that when no
plots are selected for terminal printing, none are output
to LIST either and no time-responses are simulated.

In the case that plots are to be printed at the
terminal, a series of prompts allow the user to specify
exactly which variables shall be included. Variables are
selected by specifying a name of the vector type for that

4 . variable and its index in two entries for each variable.

e

The names of the vectors are:

]

: "X": system state vector
K

! "y": system output vector
§

t "gr: system input vector

"D": disturbance state vector

{ "M": command model output vector

The system state vector is that of the design or truth

) models, according to the model used for propagation of
dynamics. For example, the pair of entries "U" and "1"
specifies that element 1 of the input vector U is to be
plotted (note that "entry” includes a carriage return).
i The input prompt includes these definitions and includes
g only those variables relevant to the controller being

? evaluated. The model output and disturbance state vectors

are only offered for CGT evaluations, and for the latter

also only if the disturbance states are explicitly modeled

Lol i
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and the design model propagates dynamics of the time-

3 response (since for the truth model the system state
vector includes all disturbance states which are con-

[ sidered to act on the system). Each user entry is tested
{ .

for valid (and relevant) name and for valid index. Prompts

.l

specify the plot number and output number for each

requested entry.

-t N

The user next is prompted to enter the time dura-

tion for the simulation. However, the duration actually

<o
.

simulated may be adjusted by the program: a time span that

is the nearest integer multiple of 100 times the controller
sample period is selected. Plots to the LIST file include
the entire time span and use 100 equal time interval samples.

Plots to the terminal include 50 time samples selected as

follows: if the time duration specified by the user is less

than 50 times the controller sample period, the samples

P—y.
Y e o e AV PP ST TR, YR iR e

plotted are the first 50 time samples from the simulation;

o om

otherwise the entire time span is included in 50 equal-

interval samples. Thus, for example, with a controller

. - ——

sample period of .02 seconds a user specified time dura- 1
tion of less than 1. second would yield plots to the
’ terminal running from time=0. to time=l., and with .02
seconds between each sample; plots to the line printer

would include samples at the same interval but extending

——— ey s et 1o

to time=2.
After completing the time-response simulation, a
prompt requests a title for the plots and prescribes the
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field width available for the entry (50 characters). The
title is applied to all plots generated from the single
simulation.

Plots are printed with the independent (time)
axis running vertically along the length of the output
page with the origin at the top. Each sample time is iden-
tified along the left margin of the plot. The dependent
axis is horizontal. Each variable is marked with an
integer from 1 to 5 at each sample time. Note that since
only one character can be printed in each location of the
plot field, when two or more variables would occupy a
single print position at a sample time, only the symbol
of largest value (1 to 5) is printed. For plots to the
terminal, if a model output is among the variables of a
plot, then all variables in the plot are plotted over a
single scale range to facilitate comparisons of actual
and desired output responses. In all other cases every
variable plotted is scaled over its own range independently

in order to achieve greater resolution for each in the plot

field. The scale(s) are listed along the bottom of the plot.

Rotation of the output page through 90° in a counter-
clockwise sense gives the usual abscissa-ordinate orienta-
tion. Terminal plots are 50 print positions wide; plots
to LIST are 100 print positions wide.

Plots of all relevant variables in a time-response
simulation (all states, inputs, and so on) are auto-
matically output to the LIST file if terminal plots are
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requested. Five variables are included in each plot. A .
list identifying all the variables by type and index for |

each plot number and plot symbol is written to LIST prior

to the plots. !
When all plots have been printed, a prompt queries
the user as to whether additional time-response runs are
desired. If more are wished, the entire set of plotting
options is repeated and the same controller may be evalu-
ated under different conditions and/or different variables
may be plotted. If no additional simulations are wished,

the controller evaluation routines are exited.

B.5.8 Kalman Filter Design ("F"). The Kalman

filter design routines compute the steady-state Kalman

filter gains for the design model. Figure B-6 shows the

1/0, logic, and computations involved. Note that the first
execution of the filter design path bases its filter com-
putations on the noise strengths specified upon initial
entry of the design model. 1In subsequent executions, any

of the noise strengths may be modified. The noise strengths
are entered as vectors of the matrix diagonals (only

diagonal elements may be modified). The matrices are,

"STATE NOISE STRENGTHS": Q (B-2a)
"DISTURBANCE NOISE STRENGTHS": Qn (B-2b)

"MEASUREMENT NOISE STRENGTHS": R (B-2c)
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Prompts for state or disturbance noise strengths are given
only if the design model specifies driving noises for the
respective process dynamics. Negative noise strengths are
not accepted.
§ In each execution of the filter design path, the
. entire noise strength matrices and Kalman filter gain i
matrix are output to the terminal and LIST file. However,
! only the diagonal elements of the noise strength matrices
are printed at the terminal.

Following computation of the filter gains, the

e,

Kalman filter design routines are exited. Execution pro- .

ceeds automatically to the filter evaluation computational

LR LR T SRR T

element described in the next subsection.

B.5.9 Filter Evaluation ("G"). Figure B-7 shows

the 1/0, logic, and computations of the filter evaluation

routines. Execytion of the filter evaluation requires that
the system truth model be established, since the covari- !

ance analysis is performed with respect to the truth model.

B i i & S il e S IPER SRR L SR

Comments in Section B.5.7 dealing with establishing the
truth model apply equally in this set of routines, except
that here use of the truth model is not optional.
Evaluation begins with computation of the eigen-
values of the ;ystem-filter matrix EKF (equation (A-61)).
As for the cloused-loop PI regulated system, the discrete-
time eigenvaiues are mapped to the primary strip in the

continuous-time domain. These mapped poles are printed
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at the user terminal and output to the LIST file (the
z-plane eigenvalues are not printed).

The primary evaluation tool applied to the filter
design is a steady-state covariance analysis. The covari-
ance matrix of the estimation errors of the filter using
measurements of the truth model dynamics is propagated for
50 filter (controller) sample periods. Samples are
coincident with the filter's sample times and the total
number is fixed at 50. At each time sample the standard
deviations of these "true" errors are computed as the
square-roots of the diagonal elements of the error covari-
ance matrix Be (equation A-72). The filter's own computed
error covariance matrix is EA of equation (A-58), which
because of the steady-state assumption, is constant for all
time samples. Taking the square-roots of the diagonal
elements of Ea then gives the filter's estimate of the
standard deviations of its errors in state estimation.
Plots for each state are output to the LIST file showing
the "true" and "computed" RMS errors for the 50 time
samples. A title may be entered to be applied to all
plots from the covariance analysis. In addition, the
"true" and "computed" RMS errors at the final time sample
are printed at the terminal.

This completes the filter evaluation. A new
filter design may then be pursued, or any other design

option may be selected.
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B.6 Program Messages

A variety of messages may be printed at the
terminal and/or output to the LIST file during program
execution. Some are purely informational, are clear in
their meaning, and provide no essential insight into
progress of the design or possible difficulties in program
execution. Such messages are not discussed here. The
remaining messages relate to errors or potential design
difficulties and are considered in categories of memory

allocation, dimensional errors, or computational problems.

B.6.1 Memory Allocation. CGTPIF uses vectors in

named Commons for array storage. These vectors are dimen-
sioned in the main routine and a variable in the Common is
set to the value allocated. These vectors are then par-
titioned within CGTPIF to store individual arrays. Before
storing arrays into each vector in Common, the storage
needed is computed according to the appropriate equation
listed in equatiors (A-15a) through (A-15j). 1In the case
of temporary storage vectors, at each point in execution
at which a new allocation is needed, the particular equa-
tion defining that need is used. If more memory will be
needed in a vector than has been allocated, a message is
written specifying the name of the Common and the neces-

sary minimum allocation. A typical message of this type is,

"INSUFFICIENT MEMORY /SYSMTX/, NEED: nnnn"

el e i
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in which the Common /SYSMTX/ has too little storage for the
problem and ‘nnnn' is the dimension required for the vec-
tor in that Common. For the vectors containing the
dynamics models, the model with insufficient memory is
identified by name. The Commons for the design, truth,

and command models are /DSNMTX/, /TRUMTX/, and /CMDMTX/,
respectively. After printing such a message to the user
terminal, execution is aborted.

In its existing form, CGTPIF will have sufficient
vector allocations to deal successfully with problems of
many different combinations of dimensions and with system
matrices in the range of 10 to 20 states. Since the pro-
gram will not allow allocated memory to be exceeded, it is
reasonable to attempt any given problem and let the pro-
gram either deal with it successfully, or let it write the
appropriate memory message if the problem cannot be accom-
modated. Section A.9 of the "Programmer's Manual” dis-
cusses the steps necessary to obtain a new CGTPIF with

different memory allocations.

B.6.2 Dimensional Errors. As each of the dynamics

models is established, or just prior to computations which
assume relations among the design and command system and
disturbance state dimensions (CGT computations), the dimen-
sional constraints mentioned in Section B.3 are tested.

In terms of the dimension notation of equations (B-4),

(B-8), and (B-11) the constraints are
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Design Model: p=r and n>d

Truth Model: r,. =r and mT-m

T

Command Model: Py=P and n>n

M (B-16)

If such a constraint is not satisfied, a message is written

to the user terminal identifying the problem and execution

is aborted. When the constraint affects only a specific
section of code, or if redefinition of the model (command
or truth) can resolve the error, then only the affected
execution path is aborted. In other cases, execution is
aborted completely.

Other dimensional tests are made in the Kalman
filter design and evaluation computational elements. For
filter design, it is necessary that the system state and
disturbance state driving noise dimensions not both be
equal to zero, and that the number of measurements be

non-zero. These are constraints on the design model:

w>0
or
wD>0

and
m>0 (B-17)

For filter evaluation, the number of driving noises for

the truth model must be non-zero:

Wop > 0 (B-18)
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since in this case, the system is deterministic and the
covariance analysis would not provide much useful informa-
§ tion for evaluation of the filter's performance. 1If any
! of these constraints are not satisfied, a message is
; written to the user terminal identifying the problem and
' execution of the filter design-evaluation computational

elements is aborted.

Ly e

4 B.6.3 Computational Problems. In certain of the

computations, characteristics of the particular design

i s i 1

iy

problem may be identified as having potential impact on the
attainment of design objectives. Messages identifying
these characteristics may be considered informational.
Other messages describe computational problems that are
immediately fatal.

In computing the ]l matrix of equation (A-29), a

pair of messages may be generated to the LIST file:

"PI MATRIX IS RANK DEFECTIVE"

T S, = P TS SOV PR B -+ NPT SV IS\

and

"nr X nc MT RANK mr"

ks 5
A
e s | o e

in which "nr" and "nc" are the row and column

dimensions of I and "mr" is its rank. The first message

AP 1S 4
e}
SR Sy
e g o

is also printed at the user terminal. The equations
employing I assume it to be an ordinary matrix inverse.
’ If it is rank defective, the matrix pseudo-inverse is
computed instead. Execution of the program continues
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since the discussion of Reference 32 concerning the I
matrix suggests that useful results may still be obtained
through use of the pseudo-inverse.

Solution of the Riccati equations for the PI
regulator (equation (A-43)) and the Kalman filter (equa-
tion (A-58)) is achieved using an iterative algorithm
(Ref 24) which may generate messages of information or

fatal error. The informative message for the PI is,
"RICCATI SOLN IS PSD--RANK mr"

in which "PSD" means positive semi-definite. For the

Kalman filter the corresponding message is,
"OBSERVABILITY MATRIX IS nr X nc OF RANK mr"

in which "nr", "nc", and "mr" are the row, column dimen-

sions and the rank, respectively. These messages convey

the same information concerning system observability. The

message is written in the case of the PI Riccati equation
only if the solution is positive semi-definite (rank
defective). Both messages are output to the LIST file

only.

For both the PI and filter Riccati equations fatal

error messages are identical:

"RICCATI NON-CONVERGENT IN nn ITERATIONS"

"RICCATI BLOW UP AT ITERATION nn INITIAL N = mm"
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in which "nn" is the iteration counter at the occurrence
of the error and "mm" is the value of a variable set
internally and used in achieving initialization of the
iterative sequence (the internal variable is not available
for modification by the user). The first message indi-
cates that the sequence of iterates did not converge. The
second message may indicate numerical difficulties or
uncontrollability (unobservability) of the system of the
PI (filter) equations. Both messages are output to the
LIST file only; a system error exit routine is then called
which writes "EXIT" to the user terminal and aborts program
execution. Note that in the event of such an abort, the
local files SAVE, DATA, and LIST are not rewound auto-
matically.

In computing the CGT controller gains an error may
occur in solving for the matrix partitions A,, or A,,
(see Section A.11.5 of the "Programmer's Guide"). If the
iterative refinements to these solutions do not converge
to within the established tolerance (1.E-6), then the fol-
lowing message is written both to the terminal and the LIST

file:
"SOLUTION ERROR FOR 'A' (CGT) AFTER 3 ITERATIONS = nnn"

in which "nnn" is the Euclidean norm of the refining
matrix solution (residual) at the last iteration. The
message is considered to be informational, and execution
proceeds normally. However, in case the value
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of the residual norm is large compared to the convergence

tolerance, the CGT design solution can be expected to be

5§ invalid.
n
X ' B.7 Running CGTPIF
% This "User's Guide"” assumes that a segmented exe-
3 ; cutable object file of CGTPIF exists. If it does not,
. % refer to the "Programmer's Guide" for instructions for

obtaining such a file.
For an existing CGTPIF object file the following

commands must be entered in INTERCOM to run the program:

N AR A Lt

CONNECT, INPUT, OUTPUT
ATTACH,CGTPIF,pfn
j CGTPIF

;
in which 'pfn'’ is the permanent file on which the object

file is cataloged. CGTPIF will then execute as described }

execution may be appropriate according to one's intended

use of the various local files which CGTPIF employs during

execution. Refer to Section B.4 for suggested commands

B ks £1 " S L
"

LY
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relevant to file usage.

\
}
' t in Section B.5. Additional commands before and after
}
{
?
1
}
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|
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Appendix C

b CGTPIF Input/Output Listing

é . The input/output (I/0) listing given here is from

L a single execution of CGTPIF. It shows two Pl regulator
designs, a CGT/PI design, and a Kalman filter design for

i' 3 design model AFTI(S3,A2,G3). The regqulators and controller,
as well as the filter covariance analysis, are all evalu-

¢ ated with respect to the truth model AFTI(S4,A2,G3). The

controller design is for the pitch-pointing decoupled

| control law. Details concerning the design, truth, and

command models employed, as well as information about the

o

results of these designs, are given in Chapter VI of this
study.
The I/0 shown is that obtained directly at the

user terminal during execution. The listing is complete

B P S —

and in order, but it has been divided into individual

page-sized portions for presentation. During execution,
additional extensive output was placed on the 'LIST' file.
The LIST file's output is not reproduced here. It extends

as continuous listing over about 45 pages and uses an out-

P T i —

put field width of 125 character positions. However,
Section C.2 gives a brief description of the output appear-

! ing on LIST for this single execution. Refer to the
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“Programmer's Guide" and the "User's Guide" for descrip-
tions of the terminology used to refer to the various

items of I/0 given here.

c.1l CGTPIF Terminal I/O Listing

C.1l.1 1Introduction. For this design, both the

design model and the truth model are obtained from a 'DATA'
file. The command model is of low dimension and is entered
directly.

In the listing below, all user entries are iden-
tified with an arrow symbol to the immediate right of each
entry. Prior to and following program execution, INTERCOM
prompts for input are given by "COMMAND-". Within program
execution entries occur in two ways: (1) when the entry
is on the same line as an input prompt, the entry is
bounded on the left by the symbol ">"; (2) in case of
multiple entries for a single prompt, entries after the
first include the entire line that is identified.

Portions of I/0 are discussed within individual
numbered paragraphs. Each portion of listing begins on a
new page. The specific portions of listing are identified
by a number in parentheses at the top center of the page
where it begins, and these numbers correspond to the para-

graph numbers below.

C.1.2 Ssummary of Input/Output.

(1) Following "LOGIN", the executable object file
'CGTPIF' is attached, as well as the 'DATA' file containing
140
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the design and truth models. Note that 'CGTPIF' and 'DATA’
are local file names while 'THESIS' and 'DESIGN' are the
corresponding permanent file names. Next, permanent file
space is requested for the local file name 'SAVE'; the SAVE
file will be generated during subsequent execution of the

program. The "CONNECT" command defines the user terminal

as the device that communicates through the FORTRAN
standard 'INPUT' and 'OUTPUT' files. Program execution
is initiated with the simple command "CGTPIF", which loads
the local file CGTPIF and begins execution at its starting
address.

(2) Program execution begins with output of an

identifying header which includes the current date and

time (obtained from calls to system real-time clock
routines). The first user entry is the sample period of
the controller. Next, the design model is established.
The design model is read from the local file DATA. As

described in Chapter VI of this thesis, two different con-

trollers were designed for this aircraft dynamics model and
for each there were different definitions of the output
matrix C of the design model. Thus, the C matrix is listed
in order to verify that the data corresponds to the pitch-
pointing design case. Since the C matrix is correct, no
changes are made to its elements (immediate entry of

"0/" when requested to enter element address and value).

The design model is then written to the SAVE file. The
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poles (eigenvalues) of the design model (A matrix) are
automatically computed and printed.

(3) The controller design path is then pursued,
and a PI regulator design is chosen. Quadratic weights of
200. on outputs 1 and 2, and of 1. on input magnitudes and
rates are entered. Weights of the X matrix (augmented
state and input magnitude weighting matrix) are not modi-
fied. The PI gains K. and K, are computed and printed.

(4) The evaluation of the PI regqulator is chosen

S e ae v

to be with respect to the truth model dynamics. The truth
model is read from the DATA file, is not modified, and is
written to the SAVE file. The poles of the truth model
(At matrix) are automatically computed and printed.

(5) Evaluation of the PI requlator begins with
computation and printout of the continuous-time mapped
poles of the closed-loop system matrix (QGCL)' In prepara-
tion for a time-response simulation of the closed-loop

system, initial conditions of 0.01 and -0.01 for states 1

.
R e . T Y ST P S NI T 1 e e

-

and 2 of the truth model are entered. One plot of 2

] ; variables is printed at the terminal. The variables are

i selected as outputs 1 and 2 (y(1l) and y(2)). A time dura-
! tion of 0.9 seconds is selected, which will give a plot

[ including all of the first 50 controller sample times and
[ will run for a duration of 1. second at the terminal (here
‘ T=0.02, and 50-T=1.). An identifying title is specified
for the plot. 1In the resulting plot the time-axis is
vertical, the dependent axis is horizontal, and plot
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symbols 1 and 2 identify the plotted variables in order
as specified above. Note that a rotation of the plot
through 90° in the counter clock-wise sense gives the usual

abscissa-ordinate orientation. Both plot variables are

scaled individually over ranges of (-0.0090 to 0.0110) and
(-0.0050 to 0.0200), respectively.

(6) No additional time-responses are wished, and
; the design of the PI regulator is repeated. In this itera-

tion, the quadratic weights are not modified (weights on

B e T}

outputs, input magnitudes, and input rates are preserved

P

throughout program execution, unless specifically modified).
However, the X weighting matrix is modified to include a
weight of 50. on state 3 of the design model (weight is
value of element X(3,3)). Note that the X matrix is com-
puted anew each iteration from the weighting matrices on
the outputs and the input magnitudes. Thus, modifications
made explicitly to X are not preserved between design

iterations. The PI gains Ky and K, are computed and

TSR W e g ey S M v S A ST AR T

printed.

- -
-~ e

(7) Evaluation of the PI regulator is again taken
with respect to the truth model, which is left as it had

been previously defined. The evaluation proceeds in the

same way as described in Paragraph (5) above. Note the

i improved damping in the responses of both outputs.

’ (8) No additional time-responses are selected.
Having achieved a satisfactory PI design, a CGT/PIl design
is pursued next. The command model is entered directly
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from the terminal. It is defined as a 2 state, 2 input, and

2 output model. The matrix ém is diagonal with values of
-5. for both entries; the matrix gm is diagonal with !
values of 0.1 for both entries; the matrix gm is diagonal
with values of 1. for both entries; finally the matrix

D, is the zero matrix. The command model is written to
the SAVE file. The poles of the command model (A, matrix)

L i kit

are computed and printed. The equations defining the CGT
controller are solved and the CGT/PI feedforward gains

K. and k, are computed and printed (since the design
m u
model does not include disturbance states, the matrix .
n

does not exist).

{(9) The CGT/PI controller is evaluated with

respect to the truth model, as previously defined. A time-

response simulation is run for a step of magnitude 1. on
command model input 1 (gm(l) = unit step), and no initial

conditions are set on the truth model states. Two plots

R T A 1 T W IR 4 SN OGRS PR e T

are printed to the terminal of 4 and 2 variables each.

[

L { The first plot includes (pairwise) outputs 1 and 2 of the

» ‘ truth model and command model (plot symbol 1 is y(1),

i é plot symbol 2 is Xm(l), and so on). The second plot
! includes states 5 and 6 of the truth model (these are the
control actuator states). Since the first plot includes

outputs of the command model, a single scale range is

———
L e S

applied to all four variables in the plot. 2 time dura-
tion of 0.9 seconds is specified (which gives the first

50 controller samples again), and a title is entered.
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The resulting time-response plots follow.

(10) No additional time-responses of the CGT/PI
controller are requested. The Kalman filter design path
is then selected. Since this is the first execution of the
Kalman filter design, the noise strength matrices (Q and
R) specified in the existing definition of the design model
are used to compute the Kalman filter gain matrix (note that
in subsequent iteration of the Kalman filter design path,
the user may modify the diagonal elements of the noise
strength matrices). The diagonal elements of the noise
strength matrices and the entire filter gain matrix are
printed. Next, a title is entered to apply to the plots
of state estimation error standerd deviations (output to
LIST file only). The final values of true and filter-
computed RMS errors for the design model state estimates
are printed.

(11) The filter design is not repeated, nor are
any of the other designs. Upon terminating execution, the
PI gains determined previously (Paragraph (6)) are written
to the SAVE file. The command "FILES" gives a listing of
existing files. Note that files SAVE, LIST, and PLOT have
been generated automatically during program execution.

The SAVE file (containing the design, truth, and command
model data as well as the PI gains Ky and 52) is then
cataloged for future use (as a DATA file). The already
existing (attached) DATA file is then returned and the

just created SAVE file is copied to the local file named
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DATA. Next, the LIST file is sent to a line printer for
listing. Finally, the SAVE file is returned, making
re-execution of the program feasible (since SAVE had been
made a permanent file, it could not be written to in sub-
sequent executions). In a subsequent execution, the

various dynamics models and the PI gains would be avail-

able from the new DATA file and a new SAVE file would be
; created (if desired). However, in this case there is no 1
; repeated execution of the program, and the user enters a

"LOGOUT" from the system. ]
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ASD CQ4PUTER CENTER = INTERCO4 5.1
SYSTE4 CSA
DATE 11/19/31 TIME 09.48.56.

PLCASE LOGIN
LOGIN,D790477 <}~
KESKSXEXEE FENTER PASSWORD-

11/19/81  LOGGED IN AT 09.49.34.
WITH USER-ID PD
EQUIP/PORT 16/051

COi1MAND~ ATTACH, CGTPIF, THESIS < —

AT CY= 100 SN=AFFDL

COAMAND- ATTACH, DATA, DESIGH,CY=1 < —

COAMAND~ REQUEST, SAVE, *PF < —

CO44AND~ CONNECT, INPUT, OUTPUT < —

COAMAND~ CGTPIF < —
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(2)

* % &« CGTPIF * * *

PROGRAY TO DESIGN A CO4MAND GENERATOR TRACKER
USING A REGULATOR WITH PROPORTIONAL PLUS INTEGRAL CONTROL

AND A KAIMAN FILTER FOR STATE ESTIMATION.
* % & CGTPIF * * *

DATE : 11/19/81

TI'."E . 090 500 33-

ENTER SA4PLE PLRIOD FOR DIGITAL CONTROLLER >.02 <:}-
READ DESIGN {ODEL FRQM ‘'DATA' FILE (Y OR N) >Y < —

MODIFY #MATRIX ELEMENTS (Y OR N) >Y <~ .

A B EX G 0] C DY EY H N R AN  GN
ENTER 4ATRIX NA4E >C < —
LIST MATRIX TO TERMINAL (Y OR N) »>Y < _—

C  MATRIX
1.000 0. 0. 0. 0.
0. 0.
1.000 -1.000 0. 0. 0.
0. 0. A
ENTER I,J AND M(I,J)--(0/ WiHEN COAPLETE) : 2 BY 8 >0/ < —

MODIFY MATRIX ELEMENTS (Y OR N) >N <:}-

WRITE DESIGN MODEL TO 'SAVE' FILE (Y OR N) »>Y < —
DESIGN MODEL WRITTEN TO 'SAVE' FILE

POLES OF DESIGN ®MATRIX

1.3497279g~03 +J( O.

1.2965361E+00 +J( O,
-3,6658359E4+00 +J( O.
~2.0000000E4+01 +J( O.
~2.0000000E+01 +J( O.
-4,92514295-01 +J3( O.
«2.2564490E+01 +J3( O.
-4.9251429E~-01 +J( O.

N s N Vs N N
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(3)

CONTROLLER DESIGN (Y OR N) »Y <J—

DESIGN REG/PI (Y OR N) »y <~

ENTER WEIGHTS ON OUTPUT DEVIATIONS: 2

ENTER I AND QW(I,I)--{0/ WHEN COMPLETE) »1 200. <
2 200. <~

o/ <}

ENTER WEIGHTS ON CONTROL MAGNITUDES: 2

ENTER I AND QW(I,I)--(0/ WdEN COAPLETE) »>1 1. <—
21. <~

o/

ENTER WEIGATS ON CONTROL RATES: 2

ENTER I AKD QW(I,I)==(0/ WdiN COMPLETE) >1 1. <—

21, <~

0/ < —

Y  HMATRIX
200.0
200.0

U4  AATRIX
1.000
1.000

MODIFY ELEJENTS OF ‘X' MATRIX (Y OR W) >N < _—

UR MATRIX
1.000
1.000
KX AATRIX
-24.12 19.93 -1.127 1.094g
75 -67.99 2.4492E-02
81.36 -33.53 .5534 1.1577E-02
15 280.0 6.5388E-03
Kz MATRIX
.2172 ~.9149
-20925 30051
149
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REZAD TRUTH
MODIFY MATRIX ELEMENTS (Y OR N) >N < ~

WRITE

POLES

TRUTH
TRUTH

OF TRUTH

-1.7502050E-02
~1.7562050E-02

1.2486051E+00
-3.9022986L+00
-2.0000000E4+01
-2.0000000E+01
-4.9251425£-01
-2.256449%0£+01

-4.9251429E-01

MATRIX

+J(
+J(
+J(
+J(
+J (
+J(
+J(
+J (
+J(

'SAVE' FILL

1.3462117E-01)
~1.34621178-01)

o.
0.
o.
0.
0.
0.

0.
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MODEL FROM °‘DATA' FILE (Y OR N) >Y <~

1

MODEL TO °‘SAVE' FILE (Y OR J) >Y < ~—
MODEL WRITTEN TO

-

CONTROLLER EVALUATION WRT TRUT:d dODEL (Y OR N) Y

—_—




PO sV -

R T T T pTp—— e

1 -

POLES OF REGPI  MATRIX
-4,2981128E+4+00 +J(
-1.0352022E+01 +J(
-1.0352022E+01 +J(
=2.4472260E+01 +3(
-1.9612664C+01 +J(
-5.4860340E+01 +J(
-5.4957660E+01 +J(
-2.2564493E+01 +J(
-4.9251461E-01 +J(

-4.9251390E-01

+J (

(5)

0. )
1.4079013E+01)

-1.4079013E+01)
o’
o.

OO CCOCC
N s s an” Vumtt ot

ENTER STATE AND IC VALUE (0/ TERAINATES):

2 -.01 <
o/

9 >1 .01 < —

2 PLOTS OF 5 VARIABLES MAY BE PRINTED AT THE TERMINAL -- SPECIFY NUABER
FOR EACd (N1,N2) 22 O
ENTEK OUTPUTS BY TYPE AND INDEX IN 2 ENTRIE3--TYPES ARE

STATE : ‘X'

OUTPUT : ‘Y

INPUT : ‘U’

PLOT 1

OUTPUT 1 >Y <~
1 ]~

OUTPUT 2 >Y < —
2 O

ENTER TIME DURATION FOR RESPONSE, IN SECOHDS >.9 -~ _—
ENTER TITLLE IN GIVEW FIELD ===-ev-=-- +
AFTI(S3,A2,G3) PITCH POINTING PI <:}—
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AFTI(S3,A2,G3) PITCH POINTING PI
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(6)
MORE TIME RESPONSE RUNS (Y OR N) >N <

CONTROLLER DESIGN (Y OR N) »>Y <—

DESIGN REG/P1 (Y OR N) >y <—

, ENTER WEIGHTS ON OUTPUT DEVIATIONS: 2

N IENTER I AND QW(I,I)=--(0/ WHEN COMPLETE) >0/ < —
: i EJTER WEIGHTS ON CONTROL MAGNITUDES: 2

' ENTER I AND QW(I,I)--(0/ WHEN COAPLETE) >§/ < -
ENTER WEIGHTS ON CONTROL RATES: 2 )
ENTER I AND QW(I,I)=--(0/ WHEN CO4PLETE) >0/ < —

>y

- wra

Y  MATRIX
s 200.0
{ 200.0
; U4 ATRIX
] 1.000
ﬁ 1.000
MODIFY ELEMENTS OF 'X' MATRIX (Y OR N) »>Y < —
LIST 'X' MATRIX TO TER4INAL (Y OR N) >N « —
4 ENTER I,J AND M(I,J)=-=(0/ WMEN COMPLETE) : 10 BY 10 »3 3 50. < —
} UR MATRIX
1 1.000
& 1.000
! 3
3 KX MATRIX
‘ ; -38.87 19.69 -1.687 1.282 5.7119:-02 .18
r 51 -65.16 2.9382E-02
. 78.03 ~83.61 .4227 5.5022E-02 1.045 -.83
= L} 24 280.0 7.6946E-03 ;
q . 1
F Kz MATRIX .
7.0350E-03  -.8717
-2.929 3.068




(7)

CONTROLLER EVALUATION WRT TRUTH MODEL (Y OR N) »>Y <:}—
MODIFY TRUTH MODEL (Y OR N) >N

POLES OF REGPI MATRIX

-2.9827602E+01 +J( 4.2991187E+01)
-2.9827602E+01 +J( =-4.2991187E+01)
-1.9616067E+01 +J( O.
-5.4953050E+01 +J( O.
-2.2652939E+00 +J( O.
-7.3649808E+01 +J( O.
-3.8538426E+00 +J( O.
-2.2564493E+01 +J( O.
-4.9251429E-01 +J( 2.3149970L-09)
-4.9251429E-01 +J( -2.3149970E=~09)

ENTER STATE AND IC VALUE (0/ TERMINATES): 9 1 .01 <. ~—

2 =01 « —

0/ < —

2 PLOTS OF S5 VARIABLES !1AY BE PRINTED AT Tdi TERMIWAL =- SPECIFY KNUABLR
FOR EACH (N1,N2) >2 0 < —

ENTER OUTPUTS BY TYPE AND INDEX IN 2 ENTRIZ3S--TYPLS ARE

STATE : 'X°

OUTPUT : 'Y’

INPUT : ‘U

T bt 2 0 ot st L st i o
N
P AP P NI ST PP o0 St 217 |3 P O TR e o -y ges

s

PLOT 1

1 OUTPUT 1 >Y <
3 1 <~
SN | OUTPUT 2 >Y < _—

! >2

' ENTER TIME DURATION FOR RESPONSE, IN SLCOWDS >.9 <:}—
e ENTER TITLE IN GIVEN FIELD ==--ee—-o-

AFTI(S3,A2,G3) PITCH POINTING PI' < —
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(8)

MORE TIME RESPONSE RUNS (Y OR W) >N <[—
CONTROLLER DESIGN (Y OR N) »>Y < _—

DESIGN REG/PI (Y OR N) >N <

1

DESIGN CGT (Y OR N) >Y <~

READ CO44MAND MODEL FRO4 ‘DATA' FILE (Y OR N) >N .. —
ENTER COAMAND MODEL FROM TERAINAL (Y OR i) >Y <[~
ENTER N >2 <—

ENTER R4 »2 <

ENTER Pl 22 < _—

ENTER A1

ENTER I,J A4D #M(I,J)=-=-(0/ WHEN COIPLET&) ¢ 2 BY 2 >1 1 =5,
22 ~5. « ~

0/ < —

ENTER BM

ENTER I,J AND 4(I,J)--(0/ wWi... CLIPLETE) : 2 BY 2 *1 1 .1
22 .1 <—

0/ <

ENTER C4

ENTCR I,J AND 41(I,J)=--(0/ WJIEW COMPLETE) : 2 8Y 2 »1 1 1.
2 21, «—

0/ « —

EJTER D4
ENTER I,J AL M(I,J)==-(0/ WHEN CO4PLETLE) : 2 BY 2 >0/ < —

MODIFY J4ATRIX ELEAENTS (Y OR N) >N <_—

VRITE CO4MAND 4ODEL TO 'SAVE' FILE (Y OR N) >Y < ~
COAMAND 1ODEL WRITTEN TO 'SAVL' FILL

POLES OF CO{1AND AATRIX

-5,0000000E+00 +J( O. )
=5.0000000E4+00 +J( O. )
KX4 HATRIX
-9,482 ~14.92
-18.47 61.13
KXU MATRIX

-2.1486E~-02 . 7287
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(9)

CONTROLLER EVALUATION WRT TRUTH 400EL (Y OR N) »>Y <}~
MODIFY TRUTH YMODEL (Y OR N) >N <|—

ENTER MODEL INPUT AND STEP VALUE : 1 >1 1l. < —

ENTER STATE AND IC VALUE (0/ TERAINATES): 9 >0/ < ~—
2 PLOTS OF 5 VARIABLES AAY BE PRINTED AT TUHE TER1INAL == SPECIFY NUI1BER
FOR EACH (N1,N2) >4 2 < —

ENTER OUTPUTS BY TYPE AND INDEX IN 2 ENTRIELS--TYPES ARE

STATE : 'X'
OUTPUT : ‘Y’
INPUT : 'U°
MODEL . ‘M'
PLOT 1
OUTPUT 1 >Y < —
>1 <~
OUTPUT 2 »1 < _~—
>1 '\i_
OUTPUT 3 >Y < _—
>»2 ~
OUTPUT 4 M «_—
|
>2
pPLOT 2
OUTPUT 1 >X  —
>5 -~
OUTPUT 2 >X «_—
26 <« —
ENTER TIME DURATION FOR RESPONSi, IN SECUNDS >.9 <«_—
Sy ENTER TITLE Iid GIVEN FIELD =receeceee- +
AFTI(S3,A2,G3) PITCH POINTING CGT/PI .. —
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AFT1(S3,A2,G3) PITCH POINTING CGT/PI
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(10)

MORE TIME RESPONSE RUNS (Y OR N) >N <
CONTROLLER DESIGN (Y OR N) >N <}
FILTER DESIGN (Y OR N) »>Y <~

Q MATRIX
1.000
R MATRIX
4.7600E-06
1.2200E-05
3.2200E-05
KF dATRIX
4.4140E-02 1.6200E~-03 9.9108E-03
1.8745E-02 <~2.6979E-02 =-7.9667E-03
6.7043E-02 =2.7613E-03 4.5761E=-02
-0.7599E=-92 4.6574E-90 3.4539E-91
2.2655E-91 ~1.56U3E-8Y9 =1.1575£-90
-1.736 34.37 1.423
-1.4593L-02 2330 6.9205E-03
-3.4765E-02 2.0068 -.1628

MODIFY TRUTil MODEL (Y OR N) >N <—

POLES OF FILTER HMATRIX

-2.1736993E+01 +J( O. )
-1.5709760L4+01 +J( O. )
-2.3546296E+00 +J( 1.2811239E+00)
-2.35462906L+00 +J( -1.2811239E+00)
-5.6279187E~05 +J( . )
-2.3443847C0~01 +J3( 0. )
-2.00000V1E+01 +J( O. )
-2.0000001E+01 +J( 0. )
D T r—— ENTER TITLE IN GIVEN FIELD ==-ce—ceea +

AFTI(S3,A2,G3) KALMAN FILTER < —
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FINAL RMS ERRORS : TRUE
(STATE 1) COYPUTED

FINAL R4S ERRORS : TRUE
(STATE 2) COAPUTED

FINAL RMS ERRORS : TRUE
(STATE 3) CO4PUTED

FINAL R4S ERRORS : TRUE
(STATE 4) CO4APUTED

FINAL RMS ERRORS : TRUE
(STATE 5) CQ1PUTED

FINAL R4S ERRORS : TRUE
(STATE 6) CO4APUTED

FINAL RMS ERRORS : TRUE =

(STATE 7)

FINAL RIS ERRORS : TRUE
(STATE 8) COMPUTED

(e R

CO1PUTED =

4.5419573E-04
4.7274126C-04

4.9942017E-04
5.3129189:-04

1.2360643E-03
1.2525561E-03

2.4935549E-92
1.1593964£-83

6.35670384E-92
3.8855083E-83

2.7082759E~-01
3.0440785£-01

1.8653740L-03
2.0952099E-03

2.0671737E-02
2.2234632E=-02
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FILTER DESIGN (Y OR N) >N <}

END DESIGN RUNS (Y OR N) »>Y
REG/PI GAINS WRITTEN TO ‘SAVE' FILE

PROGRAM EXECUTION STOP

STOP
054700 AAXIMUY EXLCUTION FL.

==-LOCAL FILES--

.723 CP SECONDS EXsCUTION TIME.
COMHAND~ FILES < —
LIST SAVE *CGTPIF  *DATA
SOUTPUT

CO44AND- CATALOG, SAVE, DATAPP « _—
NEWCYCLE CATALOG
RP = 0UB DAYS

CO4MAND- RETURN,DATA <—
COMMAND- COPYBF, SAVE, DATA < —
CU4MAND- ROUTE, LIST, DC=PR, TID=91, ST=CSB, FID=0LL <_—

CO14AND- RETURN, SAVE «_}—
CO1MAID- LOGOUT < _—

28

PLOT
SINPUT

Cr 1ID=
CT CY=

Cpa

I
C

COJNECT TIAE 0 HRS. 24 4IN.
11/19/81 LOGGLED OUT AT 10.13.32.
<

L a W e

9)
RUS

D790477 PFN=DATAPP
002 SN=AFFDL 00000768 WORDS. :

28.999 SEC. 23.631 ADJ.
118.959 sSEC. 35.211 ADJ.
75.329

162

I iy O RAAREIL ¢ WA T NGNS B e P e fome s -




. R e R " T ——— - T o *1‘
N
g |
|

C.2 CGTPIF Output to LIST File

Output written to the LIST file for this execu-

tion is identified according to the corresponding para-
graph description of Section C.l1l.2 above. Paragraphs 1
and 11 are not discussed here since they do not involve
program execution and therefore do not affect the LIST

file.

AXEY SR R N ot I R o

(2) The first output is a heading with date and
time identical to that printed at the terminal. Next the

sample period of the controller is identified. A series of

TN e

outputs related to the design model then follow; these are
identified by a heading "DESIGN MODEL". First the matrices
{ defining the continuous-time representation are printed.

I § For this case the matrices are A, B, G, Q, €, D, H, and R.

As for the terminal output, the eigenvalues of A are then

printed. Finally, the matrices of the discrete-time

T e

¢ representation are printed: ¢, §d’ Qa
N d

tional output is the matrix II under a heading of "CON-

- |

(3) Output relating to the design of the PI

» and H . An addi-

TROLLER SETUP".

- v

*
V’ ’

e e
e e o e 5 = o 1

regulator is identified by a heading of "REG/PI DESIGN".

The quadratic weighting matrices Y, Hm’ X, and gR are

AT
et

printed, followed by the regulator gain solution g;.
Finally, the PI gains Ex and 52 are printed.

(4) The truth model description is identified by
the heading "TRUTH MODEL" and in this case lists the

matrices of the continuous-time system first:
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A, B, Si» Qv Hov Riv T The eigenvalues of the
matrix A, are then printed. The matrices of the discrete-
time representation are listed: gt, Et s Q

=t
d d
(5) Outputs due to the controller evaluation

routines are identified by a heading of "CONTROLLER
EVALUATION" and begin with the mapped eigenvalues of the

closed-loop system with PI regulator, 26 . Time-responses

CL
are output in three plots of 5, 5, and 3 variables each.
Each plot is labeled with the title specified by the user;
the plots include 101 time samples extending from 0. to 2.
seconds at the controller sample period of 0.02 seconds;
the plot width is 100 character positions in width. The
first plot is of states 1l through 5 (x, (1) to x, (5)) of
the truth model; the second plot is of states 6 through 9
(gt(G) to §t(9)) and output 1 (y(1)) of the truth model;
the final plot is of output 2 (y(2)) and of inputs 1 and 2
(gt(l) and gt(z)) of the truth model.

(6) The second execution of the PI regulator
design provides the same outputs as described in Para-
graph (3) above.

(7) The controller evaluation of the PI regulator
design provides the same outputs as described in Paragraph
(5) above.

(8) The CGT/PI design path begins with definition
of the command model, with relevant output identified by
the heading "COMMAND MODEL". The matrices ém' gm, gm,
and D of the continuous-time system are printed, followed
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by the eigenvalues of the matrix A The discrete-time
matrices gm, gmd, gm' and Em are then printed. Output

due to the CGT design computations is identified by the
heading "CGT DESIGN". The matrices Arjr Ay Ay, and

A,, are printed. Finally, the CGT/PI control gain matrices
Exm and Kxu are printed.

(9) The evaluation of the CGT/PI controller is
identified by the header "CONTROLLER EVALUATION". Three
plots are printed with 5, 5, and 5 variables. Character-
istics of these plots are the same as described in Para-
graph (5) above. The first two plots include the same
truth model states and outputs as before. The third plot
includes output 2 (y(2)), and inputs 1 and 2 (gt(l) and
gt(Z)) of the truth model, and outputs 1 and 2 (xm(l) and
xm(Z)) of the command model.

(10) Output due to the Kalman filter design
routines is identified by the heading "FILTER DESIGN",
and includes the noise strength matrices Q and R and the
Kalman filter gain matrix Ef. The output of the filter
evaluation routines is identified by the heading "FILTER
EVALUATION". First, the mapped poles of the filter-system
matrix QKF are printed. During the covariance analysis
the full error covariance matrix is printed at each time
sample (in this case, from 0. to 1. second each 0.02

seconds). Finally, 8 plots are printed: each plot includes
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the standard deviations of the "true" and filter-computed
estimation error for each design model state for 50 con-
secutive time samples taken at the controller/filter sample

period.
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Appendix D

CGTPIF Program Listing

The following program listing includes all routines
of CGTPIF as discussed in the "Programmer's Manual".
Routines of the 'LIBRARY' object file are not listed (Ref 24).

CGTPIF is composed of three parts: a 'MAIN’' routine,
an optional set of user-provided routines, and a large set
of invariant routines referred to as 'CGTPIF SUBS'. 1In
this listing, routines 'DSND', 'DSNM', 'TRTHD', and 'TRTHM'
are optional routines that are of standard type (see Sec-
tion A.10 of Appendix A); routines 'ACDATA', 'GUSTS', and
'TBLUPl1' are optional routines that are auxiliary to the
standard optional routines. These optional routines are
used in establishing the design model AFTI(S3,A2,G3) for
the pitch-pointing controller, and the truth model
AFTI(S4,A2,G3), both as described in Chapter VI of this
report. Routines 'CGTXQ' through ‘'VARSCL' constitute the

set of routines CGTPIF SUBS.




PROGRAM MAIN(INPUT=GL OUTPUTZ6LLISTE64,
1 SAVE=H64,DATA26L,PLOT=64,
1 TAPES=INPUT,TAPES=0UTPUT,TAPE255SAVE,TAPL5:=2DATA,
2 TAPE99=pPLOT,TAPS16=LIST)
COMMON/MAINL/NDIMoNOIML oOMS (4C2)
COMMON /7ML IN2/COM2 (L.3°)
COMMON/INOU/KINKOUT o KPUNCH
COMMON/FILFS/KSAVZoKOATAKPLOT,KLIST,KTERN
COMMCN/SYSHMTX/NVSM, SM(2125)
COMMON/ZMTXL/NVZIN,7 41 (1225)
COMMON/ZMTX2/ZM214225)
COMMONZDSNMTX/NVDMe NODY yNOEY o DM (4175 )
COMMIN/CMCMTX/NVCMyNEWCM,NODC,CM(225)
COMMON/TPUMTX/NVTIM, TH(1725)
COMMON/ZCONTROL/NVCTL,CTL(93)
COMMON/CREGPI/NVRPI4RPI (575)
COMMON/CCGT/NVCGTCOT(4ES)
COMMON/ZCKF/NVFLT,FLT(69)

NDIM=40"

NVSM=2125

NVZM=,225
l NVOM=475¢
. NVCM=225
; NYTM=,725
] NVCTLEG: (
: NVRPI=57%

NVCGT=4.¢L
¥ NVELT=69:
P KIN=F
f KSAVE=2S
KnRATA=5"

S KPLOT=g9

\ KLIST=16
KTERM=z§
CALL CGTXDN
' STOP
Vo C END MAIN
END

e v

Lak

FHVFTOTD W oo wate, eSS A T

ey

P
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SUBROUTINE DSND(ND)
DIMENSION ND(4)
ND(1)=8
ND(2)=2
ND(3)=2
NO(L)=13

ND(5)=9

ND(&)=1
NR(T)=)

RITURN
SUIROUTIME DSND
END

SUBROUTINE DSNMUIABsEXsGeQoCyDYsEYsHyHNSRJANSJGN,QON)
DIMENSION A(B+3)9B(3+2)9sC(2+8)56(8),0Y(2,c) H(I8),4R(3,3)
DATA GRAVTYDEGTRDsPI/324iTheeC17L5329,5.2015927/
CALL ACDATACLEVEL T ,ALT,ALPHA,ZA,ZAD,Z0,ZU4ZD%Z,2Z0F,
4 PMA,PMAD JPMQ yPMUPMDE 4PMDF g XAy XAL9 XQy XUy XDE o XDFy
2 TELDOLX,REPAN)

ALPHAR=DEGTRD*ALPHA

U =VT*COS(ALPHAR)

W =VT*SINC(ALPHAPR)

At1, M) =4,

A(2,4)==GPAVTY*SIN(ALPHAR) 7U{

Al2,2)=ZA

Al(2,%)=1,420

A(2,2)=PMA

A(3,3)=PMN

A(247)<:A

A(2,8)=20

A(3,7)=PMA

A(34R)=PMQ

Al2,LY=2DF%

A{2,5)=2ZCF

A(3,4)=PM(E

Al 3,5)=PM(DF

A(bhob)==TE

AlS45)==TE

B‘k,i,zTE

8(5,2)=TE

CALL GUSTSILEVEL ¢ALTySLUySLW,SIGU,SIGW)
A(6+6)==VT/SLW

At796)=(1 4=SART(IV)I®*SIGH*SORT(=A(6+6))/SLH
A(747)=2A(6,6)

A(8,R)==VT*P] /4o /BSPAN

A(8,5)2=A(8,8)*A(7,6)

AtL8,7)==A(8,8)2A(7,7)




- e ———————-—-

G(6)=1,
GU7)=SIGN*SART(3,*VT/SLW)/VT
G(8)==-2(8,8)%G(7)
0=1.

Cli,1)=4,
ct2,1)=1,
Cl2,2)=-1,
Hti.,1)=%,
Hi2,2)=1,
H(3,2)=4,
H{2,7)=%,
R{1+1)=24,76E~H
R(242)=1.222=5
RU3,3)=3,22:~5
RETURN

C £ND SUBROUTINE DSNM

END

SUIROUTINE TRTHDIND)
DIMZNSION ND(1)
ND(1)=9

ND(2)=2

NDR(3)=3

NDEy)=1

RZTURN

C END SUBROUTINE TRTHD

1"

END

SUSROUTINE TRTHMIAT oBT o GT4 QT ¢HT RTy TOTHTNT)
DIMENSICN AT(I3:9) 3BT (9321,GT(9)yHT(349)4yRTIT,2},TLT(8,49)
DATA GRAVTIY,DEGTRDyPI/ 24474 0e347L5329930awi5927/
CALL ACCATA(LEVEL T sALTALPHALGZAYZADyZC 22U ZCE +Z0F o
1 PMAPMAD JPMO,PMU,PMOL,PMOF , XA, XAD, XQy XUy XDE 4 XDF,
2 TE,0LX,BSPAN)

ALPHAR=DEGTRD*AL PHA

UT=VT*CNS (ALPHAR)

HY=YT*SINC(ALPHAR)

RZAD=1./11.,~2ZAD)

AT (1,3)=1.

AT(2,1)==GRAVTY*SINCALPHAR) 7UP

AT(2,2)=21

AT(2,30=1,420

AT(2,4L)=2V




AT(3,2)=PMA
AT(3,3)=PMQ
AT (3,4)=PMU
AT (i 91 )==GRAVTY*COS (ALPHAR)
AT (4,2)=XA
AT (4,3)=X0=N
AT (gt )=XU
AT(2,5)=7D¢E
AT(2,€)=20F
AT (3,5)=PMDE
AT(3,6)=P MOF
AT (445)=XDE
AT (4,6)=XDF
AT(545)==TE
AT(646)==TZ
AT(2,8)=2Z2 :

: AT(299)=ZO a
3 AT (3,8)=PMA
ok AT(3,9)=FMQ
AT(LyR)=XA
AT (4,9)=Y0Q
CALL GUSTS(LEVEL 4ALT4SLUySLWSIGU,SIGH)
A" (747)==VT/SLW
AT(8,71=(1e=SAT(3e) ) *SIGHW*SORT(=AT(74,7))/SLN
! AT(8,3)=AT(7,7)
AT (9,9)==VT*PI/L,/BSPAN
AT(9,7)==AT(9,3)%AT (8,7)
: AT(G,8)==AT(9,3)*AT(8,8)

'} GT(7)=4,

GT(8)=SIGW*SQRT (3. *VT/SLW) /VT

- F GT(9)==AT (9,9)*GT(8)
| QAT=1.,
0N 2 1=41,9
2 AT(2,I)=AT(2,I)*RZAD
8 AT (2,1)=AT(3,I)+PMAD*AT(2,1)
'j 20 AT(4,I)=AT(4yI)+XAD*AT(2,1)
: | 3T (5,19="F
»i BT(642)=TF
|

P S e R i L e e aan i U

V. o

., M
N A g et e

HT (iy1)0=1,

HT(2,2)=4,

1 HT(3,3)=1,

, HT(2,8)=1,
;]; RT(191)=b o 76E=6

RT(242)=1,22E~5
RT(3,3)=23,22E~5
TOTi,10 =1,
TOT (2, 2)=1,
TOT(3,30=1,
TNT(4,5)=1,
TNT(5,6)=1,
TOY(6,7)=4,
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v TOT(7.,8)=4.

: T0T(8,9)=1,
R TURN

C END SUBROUTINE TRTHM
END

R e p— e

SUBROUTINE ACDATA(LEVEL+VT,ALT,ALPHA,ZA,2ZAD,2ZQ,2U,2ZD:,20F, ’
1 PMA,PMAL yPMO P MU, PMDE s PMDF ¢ XAy XAD o X0y XUy XDE o XDF
2 TE,DLX,BSPAN)
COMMON/FILES/KSAVE yKDATAKPLOT 4KLIST,KTERN
DATA NENTEY/L/
5 WolIvTE 473
RTAD*,LEVEL
IF((LEVELeGTo3) e ORy (LEVEL4LT44)) GO YO S
WSITE 1372
OAD*,VT, ALT,ALPHA
WSITE {03
READ*, ZA,ZAD,ZQ 42Uy ZDS 4 20F
1 WRITE 1%
] READ®, FUA ,OMAD, PMQ, PMU, PMDE , PMOF
I § W=ITE 475
1 R:AD*, XA, XAD ¢ XQ s XUy XDZ 4 XDF
W= ITE(KLIST,471)
WRITS(KLIST,1%9) LEVEL
WRITE(KLIST,1%2)
WRITE(KLIST113) VT LALTLALPHA
WRITE(KLIST,173)
WRITZ(KLIST,412) ZAs2AD,2Q,ZUs20E+2ZDF
WEITT(KLIST 4%4)
WRITS(KLIST,41%) PMA,PMAD,PMQ,PMU,PMIZ,PMF
WRITE(KLIST,175)
WRITE(KLIST,110) XA ,XAD,XQ,XUyXNE ,XOF
IF(NINTRY.EQ.5) GO TO 1.
BIPAN= 3,
DLX=13.798
R TE=£f.
ey i RTTURN
. 1*  WSITE 17¢
ﬁ_ﬂ READ®, TS

e G e

4 £ adi aadadehl

WY

/

2

W2ITE 107
} READ*, DL X
' WRITE 178
| READ*, 8SPAN
FORMAT (** ENTER TURBULENCE LEVEL (14243) >7)
FORMAT (= ENTER TRIM VELOCITY, ALTITUDE, ANO ALPHA >*)
FORMAT (™ ENTER ZA, ZACs 2Q, ZUs Z0DE,s ZOF >7)
FORMAT (™ ENTER MA, MAD, MQ, MU, MDE, MOF >*)

(YT V*S
[F R XPRE
SN
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bt o 22

175 FORMAT(*™ ENTER XA, XAD, XQy XU, XDE, XOF >*)
176 FORMAT(™ ENTER TIME CONSTANT FOR ELSVATOR >™)
107 FORMAT(™ ENTER DISTANCE FROM CG TO ACCILEROMETER >*)
108 FCRMAT (™ ENTER WING SPAN »*)
i"9 FORMAT(6X,I1)
11" FORMAT (6 (6X4PELS,T))
RETURN
C END SUBROUTINE ACDATA
END

g e -

.
TR, SRS T ST P 9y

SUBRNUTINE GUSTSILZVEL ALT,SLU,SLW,SIGU,SIGHW)

DIMINSICN ATRBLI4IJATFB2CU) yATRB3I(L) ,SIGT1(4) ySIGT2(4) 4SIGTI(4)
DATA ATPBL1/2000e¢ 9275 % e 0dd %0 09302 0/

DATA ATPEC/20vu e 9275 e0luT3 e o453,/

DATA ATRB3/2{ )00 9500 esC00Cue,7¢lLioe’

DATA SIGV1/44595e15e9t. e/

DATA SIGT2/8l5’1ﬂ0'ib..ﬁ./

DATA SIGT3/12e9021092009%e/

b DATA ITL,IT2,IT3/71,1,1/

] IF(ALT=175+4) 5445,15

TR WY 857 T wrerer Ty

i 5 IF(ALT=1vive) B413y10
l 8 ALTT=4LT
G0 TO 12

1" ALTT=1)0,

1c SIGH=2 (S*FLOATILEVEL)
SIGU=Le/(ed7748,23E~4"ALTT)®* 4
SLW=ALTT

4 SLU=ALTT*SIGU**2
SIGU=SIGU*SIGHW
GO TH 195

15 SLU=175",
SLW=475",
IF(LEVEL=2) 17,18,16

1% CALL TRLUPL(ATRB3,SIGT3,69IT3,ALT,SIGU)
GO TO 19

17  CALL T3LUPL(ATRBL1,SIGTL4+IT1,ALT,SIGU)
GO TO 19

} 118 CALL TBLUFPL(ATRB2,SIGT2,4,IT2,ALT,SIGU)

19  SIGW=SIGU

17 RETURN

C END SUBROUTINE GUSTS
END

s ———,

40} b P
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RO DR S -

; SUSROUTINE TBLUPLIX Y sNyIXPyXP,yYP)
: DIMENSION X(1),Y(4)
: IFLIXF) 45,15,
¢ 1 IFCIXP=N) 40,10,5
] 5 IXP=N
: X GO TO 18
! v 3 IF(XP=X(IXP)) 12,18,2"
t 12  IXP=IXPeg
; IFC(IXP) 415,15,1%
i 15 IxP=4
b 18 Yo=Y(IXP)
r RITUEN
H ras IF(IXP=N) 21,18,5
: 21  IXPP1=IXF+1 :
§ 22 IF(XP=X(IXPP1)) 25,30 ,3" ;
] 25  ¥YO=Y(IXO) +(XP=X{IXP))/(X(IXPPL)=X(IXP))*(Y(IXPPL)=Y(IXP)) i
1 RETUFN ‘
£ 3" IxXP=IXPPY
L Go 10 20
q C SND SUBROUTIN® TBLUPQ
4 END
' 3
4
k
b
b
| 3
f'..i r
-y |
a8 t |
| |
= I g
5 |
X |
: %

. e——t
o~
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SUBROUTINE CGTXOQ

COMMON/MAINL/NITIMoNDIML,COML (1)

COMMON/MAIN2/COM2(1)

COMMON/INOUZKIN, KOUT  KPUNCH

COMMON/DE SIGN/NVCOM, TSAMP ,LFLRPI,LFLCGToLFLKF JLTEVAL JLASORT
COMMON/FILES/KSAVE,KDATA,KPLOT ,KLIST,KTZRM
COMMON/SYSMTX/NVS M, SM(4)

COMMGN/ZMTXL/NVZM,ZML ()

SOMMON/ZMTX2/Z42 (1)
COMMON/NDTMD/NN Dy NRDs NPDyNMD yNDI o NWD,NWDD yNPLD y NWPNW Oy NNPR
COMMON/LOCO/ZLAP ¢ LGPy LPHI 4 LBC sLEXoLPHD 3 LOyLONSLADy LSy LOY,LEYSLHP LR
COMMON/ZOSNMTX/N VDM, NODY +NOEY , DM (1)

COMMON/NDIMC/NNC o N2C o NPC

COMMON/LOCC/LPHC L BOC 4L CCoLEC

COMMON/ZCMDMTX/NVEMy NENCMyNODC,CH(2)
COMMON/NDIMT/NNT 4 NCToNMToNHT
COMMON/LOCT/ZLPHT 4 LBOT yLQDT oL HTyLRT4LTDOT,LINT

COMMONZTR UMTX/NVTM, TM (1)
COMMON/ZLCNTRL/LPI 1 JLFI12,LPI24,LPI22,LPHCL L BOL
CAMMON/ZCONTROL/ NVCTL ,CTL (4)
COMNONZLFE GPI /L XDWoL UNH yLPHCL o LKX 4LKZ
CAMMON/CREGPI/NVRPI 4RPT (1)

BOMMON/ZLCGT/LAL L LALZ LA LA23,LAL2,LA22,LKXALL LKXAL24LKXALT
COMMON/CCGT/NVCGT,5GT (1)

CIMMON/LKF/LEADSN,LFLTRK,LFCOV

COMMON/ZCKF/NVFL T,FLT (1)

DIMINSION LD(15) 4ND (1" )

DATA NPLTZM/Bu5/

DATA IE0I ¢NO/=141HN/

RZWIND KLIST

WEITS(KLIST,445) DATE(DUM) o TIMS (OUM)

W= ITZ(KTEKM,115) DATE (DLM), TI¥E (DUM)

FORMAT (*1%,27X,"* ® » CGTPIF * * *=/{4X,

“PROGRAM TO DSSIGN A COMMAND GENERATOR TrRACKER™/EX,

“USING A PZGULATOR WITH PROPORTIONAL PLUS INTEG®AL CONTRCL™/1€X,

“AND A KALMAN FILTER FOR STATE ESTIMATION."/Z5X,

“s % % CGTPIF * % %%//731X,"DATE & “yA1 //411%,

“TIMZ 8 “4AL5/7/7) ‘
REWIND KSAVE f
RZWIND KCATA i

}
|
|
}
§

WRITE(KSAVE,142) IEOT NPLTZM
00 17 T=4,17

ND(T)="

D0 12 I=1,15

LD(I)=4

LFLRPI="

LFLCGT=t

LFLKF=3 %
LTEVAL=P x
LABORT=" | !
IPI="
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ICGT=¢

ITRU=*

IFLTR=Y

NVCOM= MINC (NDIM, NYZM)

KOUT=KLIST

KPUNCH=KPLOT

IF(NVSNM,GE,NPLTZM) GO TO 5°

WFITE 473 ,NPLTZIM

G0 YO 4((:

W=ITE 172

RTAD?, TSAMP

IF(TSAMPoLEeTe) GO TO 5~
WRITZUIKLIST123) TSAMP
FORMAT (**. SAMPLE PERIOD IS *"oFS5.3," SECONDS™)
CALL SETUPIND,LD,ICGT,ITRU,1)
IFLLABORT) 400 100,206 7

LAasQrPT =2

WRITZ 14

FOIMAT (*. CONTROLLZRE DESIGN (Y OR N} >*)
RZAD 114, TANS

IF(IANSL.EQ.NO) GO TO 54!

LFLKF=Q

CALL PIMTX(IPI)

IFC(LABORT) 12484425,472

H-ITE ME

FOIMAT L~ GESIGN RZG/PI (Y OF N} >*)
REZAD A11,IANS

IF(IANS,EQeNOY GO TO 4157

CALL SREGPI

IF(LABORT) 400042860 0200°

WPITE 3%¢

FORMAT (*7 BESIGN CGT (Y 02 N) >*)

READ 141,IANS

IF(IANS,EQeNO) GO TO 1°°

CALL SETUPIND, LD, ICGT,ITRUL2)

IF(ICGT) 155,43¢,455

IFC(LASORT) 4NY426ustlil

caALL SCGY

IFILABORT) 403,170,450
IFLLFLCGT4LE«Y) GO TO 425

LABQORT=!

WRPITE 477

FORMAT (*f CONTROLLER EVALUATION WRT TRUTH MODEL (Y O NI} >*)
RZAD 111, IANS
IF(IANS.EQ.NO) GO TO 25°
CALL SETUP(NDOLLD,ICGT,ITRU,3)
IFCLABORT) 28742649237
LTEVAL=F

caLL CEvaL

GO TO 4.

LABORT="
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WNRITE 1%e
' 168 FORMAT (. FILTER DESIGN (Y OR N) >*)
RTAD 111,IANS
IF(IANS.EQ.NO) GO TO 95"
CALL FLTRK(IFLTR)
L IFC(IFLTEL,EQeL) GO TO 934
IF(LABORT) 1020,54t,47C0
547 CALL SETUP(NDsLDsICGT4ITRU,3)
IF(LA3ORT) 504,525,100%
$25 CALL FEVAL
IF(LABORT) 1,20 ,500,1408"7
WSITE 179
1"9  FOIMAT (™" tND DESIGN RUNS (Y OR N) >*)
R:AD 111,IANS
IF(IANS.EOQ.NO) GO TO 1L°
IF(LFLRPI,EQ, i) GO TO 13458
NPNTS= NS.D*NNPR
3 NJ(1)=NPNTS
ND(2)=LKX
NI (3)=LKZ
: CALL WFILFD(yNPNTS+NCoRPI(LKX))
{ WOITZ 413
, 130 Y CONTINUS
; WAITZ(KLIST,11M)
Hf RIWIND KSAVE
- REWIND KCATA
| RIWINC XKLIST
= WRIT:Z 147
| 1°1 FORMAT (™ INSUFFICIENT MEMORY /SYSMTX/, NE:ZD? *,I4)
bk 172 FORMAT("LENTER SAMPLE PSRIOD FOR DIGITAL CONTROLLER >*)
 f 41¢ FCPMAT ("7 PROGRAM EXSCUTION STOP™)
{ 111 FORMAT (a2)
112 FOQMAT(21I4)
113 FORMAT(EX,“REG/PI GAINS WRITTEN TO *SAVE® FILE®)
RITURN
€ ZND SUBROUTINE CGTXOQ
END
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SUBROUTINE SETUP{NILLDyICGTITRULITYPE)
DIMENSION NO(1),LD(1)
IF(ITYPE=2) 1i,15,22
i CALL SOSN(ND,LD)
RETURIN
15 CALL SCMD(NDosLD,ICGT)
RETUPN
et CALL STRTH(ND,LDyITRU)
RETURN
C END SUBRDUTINE SZTu®
END

SUBROUTINE SGSN(NDyLD)
COMMON/CF SIGN/NVCOM, TSAMP 4 LFLRPI JLFLCGT o LFLKF 4L TEVAL ,L ABORT |
COMMON/SY SMTX /NVSM, SM (1) -
COMMON/ZMTXL/NVZMoZM4 (1)
COMMON 7ZMTX2/2M2(1)
COMNON/NDIMOD/NNDy NRD 4 NPDy NMDy NDD ¢ NHO g NHCD yNPL Dy NHPNH Dy NNPF.
DIMENSION ND4),LD(1)
NSIzE=¢
It CALL RSYS(SMyLDyNIy21,NSIZE)
5 IF(LABORT.GTs0) RETUEN
t NSIZS=NNPR
, IF(NPLDsGTeNSIZE) NSIZE=NPLD
| NSIZE=NSIZE®*NSIZE
C b IF(NSIZZ4LEJNVCOM) GO TO 5
: WRITE 134 ,NSIZE
R { 1%1 FORMAT (“f INSUFFICIENT MSMORY /MAINL/,/MAIN2/o/ZMTX1/,/ZMTX2/, NEED
i 13 ",14)
-} LAAORT=NSIZE
, RZTURN
ro 5 IF(NSDEQ.NPD) GO TO 15
ik WSITE 4f 2
‘;i 172 FORMAT("INUMBSR OF INPUTS AND OUTPUTS MUST BE ZOUAL FOR DESIGN™)
R | LASORT==4
£ ‘_:"' R:TUFN
1R 1%  CALL DSCRTD(LD,ZM1,7M2)
P RETUEN
P C END SU3IROUTINE SOSN
: i END
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SUBROUTINE DSCRTYD(LO,ZML,2ZM2)
COMMON/MAINL/NDIMsNDIML ,COM (1)

COMMCN/DE SIGN/NVCOMe TSAMP LFLRPIZLFLCGT, LFLKF,LTEVAL 4LASORY

COMMON/FTLES/KSAVE s KOBTASKPLOToKLISTHKTERN
COMMON/SYSHMTX/NVSH,SM(1)

COMMON/NDIMO/NNDy NRD¢NPDyNMD ¢ NDD ¢ NWDyNWDD yNPL D9 NWPNWD NNPR
COMMON/LOCO/LAP yLGP o LPHI W LBOJLEX9LPHDO LQy LANSLADGLCoLDY LY, LHP,LR

CONMON/DSNMTX/NVDM,NODY,NOEY,OM(1)
COMMON/ZLKF/ZLEADSNGWLFLTRKyLFCCY
COMMON/CKF/NVFLTFLT (1)

DIMENSION LDIL)ZMI(1),ZM2(4)
NOIM=NPLC

NDIMI=NDIMey

CalLl POLES(SMyNND,1yZM1,7M2)

D0 1 I=1,NND

IFEZML(I) 4GT4Ve) LFLEGT==4

CALL TFRNTX(SMsDM,NNDNND,2)

LLP=4

LGP=LAPNPLD*NPLD

IFINHD,EQewd) GO TO S

CALL TFRMTX(SM(LD(L)) 4OMILGP) sNNDNWD,2)
IF(NCD.EQ.L) GO TO 4iC¢
LL{=LADCR(NPLD4NND¢1,1)
L2=LADNR(NPLD 1 ¢ NND4+1 )
LI=LADDR(NPLDyNND+1 ,NND+1)

CALL ZPAPTIOMILL) yNDDyNNDJNPLD)

CALL TFEMTX(SMILD(3IN) sDM(L2) NNOsNDD,42)
CALL TFRMTIXISMILD(12)),CMLL3) (NDD,NDD,2)
IF(NWDL,EQ.®) GO TO 8

Li=L1+LGP=1

CALL ZPARTI(DMIL1) +NDDyNWDH,NPLD)
L2=LADDR(NPLO 4L ¢ NHD+1)+LGP=1
LZ=LANDRUINPLC,NND+L JNHD+1) +L GP=]

CALL ZPARY(DMIL2) ¢+NNDyNWDD4NPLD)

CELL TFRMTX(SM(LOD(L3)),OM(L3) ¢NODNHDD,2)
LPHY=L GP+NPLD*NKWPNUD

LTADSN=1

CALL NOSCFTY(DMyNDIM,NT)

CALL DSCRT(NPLDyOM, TSAMP,,FLT yZML 4NT)
LFLTRK=LEADSN+NPLO®NPLD

CALL TFRMTX(DM(LPHI) FLTyNNDyNNDo1)
LBD=LPHI + NND®*NND

CALL TFRMYX(SM,ZML1.NND,NND,1)

CALL FHMMULISM,SMILD(2)) 4NNDy NND,y NRO,OM(LBD))

LEX=LBD+NND*NRD

IF(NDD+EQ.3) GO TO 15
Li=LADDR(NPLOy 4 ¢ NND#1)

Calc TFPMTX(OMUILEX) oFLT(LL) 4y NND,NDO,1)
LPHO=LEX+NNO*NOD

L1=LACDR (NPLDyNND®1 4NND4+1)

CALL TFRMTX(DMILPHD) (FLT(LL) yNDD,NDD,1)
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; LQ=LPHD+NTO*NDD
1 GO TO 2t
15  LO=LEX
20 IF(NWD.EQ.L) GO TO 25
CALL FTMTX(SM(LO(5) ) DML, NNDs NKD)
LQN=LQ¢NHO®NWD
69 To 2&
25  LAN=LD
28  IF(NWDDJEQ.G) GO TO 33
CALL FTMTX(SM(LD(14)) »DM(LQN) 4NHDD,NWDD)
: LND=LON+NWOD*NWDD
; 4 60 TO 35
: 33 LOD=LON

s IF (NWFNWD,GTs4) GO TO 3%
3 } LCc=LQD
. . GO TO 36
‘ ] 35 CALL QDSCRT(DM(LO)+DM(LON) yZM1,ZMZ)
3 LC=LOD+NPLO*NPLD
3 26 LNY=LC+NPD*NND
] LIY=L0Y+NPC*NRD
; LHP=LE Y4NPL*NDD
LR=LHF+NMC*NPLD
] Li=LR+NMDC*NMD=LC
CALL FTMTX(SMILD(6E) ) sDOM(LCIoL1y1)
l y L1=LEY-1
NODY=1
DO &> I=LDY,L1
IF(OM(I) «E0s8s) GO TO &°
NODY=%
l ‘ GO TO 45 ;
, 4 CONTINUE ]
45  NOcSY=% 1
| IF(NDDeLT+1) GO TO 55
’ Li=LHP=1
D0 5¢ I=LFY,L1
IF(DMII) 4 EQs%4) GO TO 5°

NQOZvY="
GO TO 5°¢
R 14 CONTINUE
iyt 55 CALL MATLST(OM(LPHI) yNNCoNND ¢ “PHI*9KLIST)

CALL MATLST(DMILBD) 4 NNDyNRDy*"BD"yKLIST) ]
IF (NWPNWD.GTo0) CALL MATLSTC(ODM(LQD) yNPLDyNPLDy*QD™KLIST)
IF(NMDoGT L) CALL MATLST(OMC(LHP) ¢ NMO,NPLD,"HA"KLIST)
IF(NDDeEQ ") RETURN
CELL MATLST(OMILEX) g NNDoNDDy"EXD"KLIST)
CALL MATLSTIOM(LPHD) yNDDyNDDy “PHN*",KLIST)
RETURN

C END SUBROUTINE DSCRTD
£ND
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SUBROUTINE QOSCRY(QeQNyZM1,2ZM2)
COMMON/MAINL/NDIM,NDIM ,COML (1)

COMMON/DE SIGN/NVCOMy TSAMP, LFLRPI JLFLCGT yLFLKFoLTEVAL +LABORT
COMMON/NDIMD/NNDOy NROy NPDy NMD ¢ NDD 9 NWO o NWODyNPL Oy NWHPNWDy NNPR
COMMON/ZLOCD/LAP JLGPsLPHI oLBDyLEXoLPHDyLQyoANyLQOSLCoLDYLEY4LHPHLR
COMMON/OSMMTX/NYO My NODY4NOZY ,TM(4)

DIMENSION 001),QN(1) 4ZM1(L),ZM2(1)

IF(NWDL,EQ.") GO TO 5

CALL TFRMTX(QeZM1 yNWI9NWD,2)

IF (NWOC.EQed) GO TO 1°

L1=LADDP(NPLD+NWD#L4NWI+L)

CALL TFRMTX(QNyZM2(L1) ¢sNWHDD,NWDD,2)

IF{NWD,EO, &) GO TO 1~

L1=LADDR(NPLD 1 4 NHD¢1)

CALL ZPARTI(ZMLi(LL),NWI,NWOD4NPLD)

Li=LADDR{NPLDyNWD*L,1)

CALL ZPART(ZML(L1)+NWOD+NWO,NFLD)

CALL MATT (NPLCyNWPNWDOMILGP) 4244 ,2ZM2)

CALL INTEGINPLD,0M{LAF)+ZM2,0M(LQD),TSAMP)

RTITUFCN

SUSROUTINE QDSCRY

END

SUBROUTINE SCMD(NDyiD,ICGT)

COMMCN/ZDE SIGN/NVCOMy TSAMPLFLRPI4JLFLCOGT 4LFLKF,LTEVAL,LABORT
COMMON/FILES/KSAVZZKDATAZKPLOT)KLISTHyKTERM
COMMON/SYSMTX/NVSM,SM(1)
COMMON/ZZMTXL/NVZIM,ZML (1)

COMMON/ZMTX2/7ZM2(1)
COMMON/NDIMD/NNC o NRD9yNPDyNMO S NDDyNND gy NWCI 4 NPL D ¢ NWPHWE 9 NNPFP
CIMMON/NDINMC/NNTyNRCyNPC
COMYMON/CHMOMTX/NVC My NEWC My NODCHC1 (L)
COMMON/LREGPI/L XDW,LUCHW LPHCL yLKXyLK2Z
COMMON/CFEGPI/NVRPILRPI(Y)

DIMENSION ND(1),LO(Y)

DATA NG/4HN/

WRITE(KLIST,110)

FRIMAT(//7 7748 X 5 (=% ) 4=CGT DESIGN™5(™ **V7/77)
NZWCM=,

IF(LFLRPI) 4i 45,17

W=1ITE 172

READ 111, IANS

IF(IANS.EQ.NO) GO TO 8

CALL RZADFS(SMyNDyb,IERR)

NSIZE=ND(1)

LXX=NT (2)

LKZ=NO(D)
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CALL FYMTX(SM,RPI(LKX) 4 NSIZE,Q)
IF(IERReNEsu) RETUPN
1 CALL MATLSTU(RPI(LXX) yNRCyNNDy*KX*oKLIST)
& CALL MATLST(RPI(LKZ) yNROyNRDy*KZ"yKLIST)
: LFLRPIz=4
G0 7O %
8 IFILFLCGT,GEed) GO TO 9
WRITE 413
173 FORMAT(™I SYSTEM UNSTABLE = = OPEN-LOOP CGT NOT FESASIBLE®)
RETURN
; 9 LKX=1
£ LK2=1
NSIZE=NFPLC*NND
CALL ZPART(RPI(LKX) y1,NSIZE,1)
! it IF(ICGT.EQ.L) GO TO 12
-3 WRITE 1”8
F i 176 FORMAT(*™ MCDIFY COMMAND MODEL (Y OR N) >")
4 RTAD 114, IANS
IF(IANS.EQeNO) RETURN
k. 12 CALL RSYS(SMyLD,ND,2,ICGT)
I IF(LAQO0RTNE. ) RETURN
3 - NZWCM=1
CALL POLES(SMyNNC,yZ9ZML,ZM2)

R e sl i

paywy srerm s

;
f IF(NPCL,EQ.NPD) GO TO 15
| E WRITE 114
: LABORT==1
§ RETURN
; 15  CALL DSCFTCILD,ZM1)
{ 172 FORMAY(™ READ REG/PI GATNS FROM *DATA’ FILE (Y OR N) >=)

E 174 FORMAT("f COMMAND AND CSSIGN MODEL OUTPUTS NOT EQUAL IN NUMBER®™)
o 111 FORIMAT(42)
B | R7TURN
C END SUSROUTINE SCMD

END
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e
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SUBROUTINE DSCRTC(LO,ZM1)
COMMON/MAINL/NDIM,NDIML,COML (1)
COMMON/DE SIGN/NVCOM, TSAMP JLFLRPIJLFLCGT JLFLKFLTEVAL +LABORT
COMMON/FILES/KSAVE, KDATA,KPLOT XKLIST,KTERM
\ COMMON/SY SHTX/NVSM,SM (1)
S COMMON/NDIMC/NNCs NRCy NPC
' COMMON/LOCC/LOHC 4LBDC 4LCCyLDC
COMMON/CMDMTX/NVCMy NEWCMsNODC s CM (1)
DIMENSION LD(1)9ZM1(1)
NDIM=NNG
NOIM1=NDI Mag
CALL NOSCRT(SM,NDIM,NT)
CALL DSCFRTINDIM,SM, TSAMP,CM,ZM1,NT)
LPHC=4
: LBDC=LOHC +NNC*NNC
o CALL MMUL {ZM1,SMILD(2)) NDIM NDIM,NRC,CM(.BTC))
-} LCC=LBDOC+NNC*NRC
3 LDC=LCC+NPC*NNC
L1=LDC+NPC*NRC=LCC
CALL FTMTY(SMILD(3)),CM(LCC)oL1,1)
i NODC=1
Li=LisLCC-1
DO 1 I=L0C,Lt
i IF(CM(IY.EQels) GO TO 1°
| 3 NODC=3
GO TO 15
3 1" CONTINUF
15  CALL MATLST{CMy NNCyNNC, *“PHM™ ,KLIST)
{ CALL MATLSTI(CM(LBOC) ¢ NNCyNRC 9*BIM*4KLIST)
E CALL MATLST(CM(LCC) yNPCyNNCy*™CM*,KLIST)
CALL MATLST(CM(LDC) 4 NFC,NRCy“DM*”4KLIST)
s RTTURN
C TND SUBROUTINE DSCRTC
END
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SUBROUTINE STRTHIND,,LD,ITRY)

COMMON/DE SIGN/NVCOMo TSAMP L FLRPI JLFLCGT o LFLKFoLTEVAL yLABORT
COMMON/SYSMIX/NVYSH,SMIL)

COMMONZZMTXL/NVIM,ZML (1)

COMMON/ZZMTX2/72IM2(1)
COMMON/NDIMD/NNOyNRDgNPDy NMD o NDDy NWDyNWCD yNPLD s NWPNWE ¢ NNPR
_CON"ON/NDI"TINNT'NRT’N"T'N"’

DIMSNSION ND(L),LO(Y)

DATA NO/ZLHN/

IF(ITRUEGeJ) GO TO S

NSITE 103

FORMAT (" MOODIFY TRUTH MODEL (Y OR N) >%)

RTAD 111, IANS

FORMAT(AX)

IF(IANS.EQ.ND) GO TO 2"

CALL RSYS}SHQLD'ND'3’IT°U)

IF(LABORT+GTo %) RETURN

NSIZE=NNT*NNT

IFINSIZELLE«NVCOM) GO TO 8

HWRITE 4154 ,NST2E

FOQHAT("(INSUF#{CILNT MIMORY IHAINiIvIHAINZI,IZNTXL/,IZHTXZ/. NEED
1t *,1I2)

LABORT NSIZE

RZTURN

JFUINCT,EQaNRD) o ANDo INMT,EQe NMDY) GO TO 1.

WRITE 1ig

FORMAT (7 INPUTS AND MZASURZIMENTS MUST BE tEQUAL IN NUMBER FOF D=SI6
4N ANO TRUTH MODELS")
LABORT==4

RETURN

CALL POLES(SMyNNT,3,72M4,7ZM2)
CALL DSCRTY(LD,ZMY)
LTEVAL=1

RETUPN

SUSRNAUTINE STITH

END

N
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SUBROUTINE DSCRTT(LD.ZM1)
COMMON/MAINL/MDIMNDIML,COML (1)

COMMON/DE SIGN/NVCOMy TSAMP o LFLRPI JLFLCGT JLFLKFoLTEVAL,LABORT
COMMON/SYSMTX/NVSM,SMLL)
COMMON/FILES/KSAVESKDATAKPLOTSKLISTKTERM
COMMON/ZNOIMC/NNDyNRDy NPDoNMD 4y NDOD s NWOyNWDD ,NPLD s NWPNW Dy NNPR
COMMON/NDINT/NNT s NT o NMT,NWT
COMMON/LOCT/LPHTY 4LBOT LOCT 4LHToLRT4LTOT,LINT
COMMON/TFUMTX/NYTM, THM(1)

DINENSION LD(1),ZM1 (1)

NOIM=NNT

NDIML=NDIMeL

CALL NUSCRT(SMINDIM,NT)

CALL DSCRTI(NDIM, SMyTSAMP,TM,ZM1,NT)

LPHT=1

LBOT=LPHTeNNT®*NNT

CALL MMUL IZML  SMILD(2)) NDIMyNDIMNRT,TM(LBDT))
LNDT=LBOT+ANT®NRTY

IF(NWT«GTeu) GO TO 4t

LHT=LOCTY

G0 TO %5

CALL MAYZ (NODIMyNWT,SMILD(3)) 4SMILDIBYYZM)
CRALL INTEGINDIM,SMyZMLTM(LQLCT) ,TS 1MP)
LHT=LQODT+ NNT*NNT

LAT=LHT+NMYSNNT

LTOTSLRTENMTENNMT

LYNT=LTOT4NNCENNT

Li=LTNT4NCD*NNT=LHT

CALL FTMTX(SMILD(S) ) g TM(LHT)4L1,1)

CALL MATLSTI(TMyNNToNNT*PHT"KLIST)

CALL MATLST(TM(LBODT)Y yNNTyNRT 48Ty KLIST)
IFINWT (GTal) CALL MATLSTITMILQDT) yNNTyNNT,~Q0T=,KLIST)
RZTURN

SUBROUTINE DSARTT

£ND
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C FND

SUBROUTINE PIMTX(IPI)
GOMMON/MAINL/NDIMyNDIML ,COML (L)

COMMON/DE SIGN/NVCOMy TSAMP,LFLRPILLFLCGT,LFLKF,LTEVAL yLASORT
COMMON/FILES/KSAVEyKDATA,KPLOTKLIST,KTERM
COMMON/ZMTXL/NVZM,ZML (1)

COMMON/ZZMTX2/2ZM2(1)
COMMON/NCIMD/NND o NRDy NPDy NMD ¢ NDD ¢NWDyNWOD o NPLD o NWPNW Dy NNPR
COMMON/LOCD/LAP LGP 3L PHI L BDLEX sLPHDyLQyLANLADILCyLDY4LEY,LHP4LR
COMMON/OSNMTX/NVDM, NOCY,NOEY, DM (1)
COMMCN/ZLCNTRL/LPILL,LPILZ,LPI21,LPI22,LPHUL,LBOL
COMMON/CONTROL/NVCTLL.CTL (L)

IF{IPTI«c0e1) RETURN

WRITE(KLIST,110)

FORMAT (/77714 X35 (™ ™) 4"CONTROLLER SET=UP™,S5(*™ **)///7/)
NDIM=NNPE

NSIZE=NDIM*(2*NDIM+NPD)

IF(NSIZEJLE«NVCTL) GO TO 4°

WIITE 474 .NSIZE

FORMAT (7 INSUFFICIENT MEMORY /CONTROL/s NGEDS *¢Ik)
LABORT=NSIZc

RITURN

NDIMA=NDIM+4

LrIit=1

LPI1c=LPIL1+NND*NND

LPI2i=LPI12¢NND*NRD

LPI22=LP]I21+NPD*NND

LoHOL=LPI c2+NPD*NRD

CALL TFRMTX(OM(LPHI) s ZML1sNND9NND,»2)

CALL SUSTI (ZML,NND,NDI™)

L2=LACOR(NDIM,1 4 NND+1)

CALL TFRMTX(DA(LBI)+ZML(L2)4NNDINFD,y2)
LT=LADOR(NDIMINND+1,1)

CALL TFRMTX(DM(LC) 4ZMLi(L3) ,NPDyNNDy?2)
LG=LADDR(NDIM,NNDe¢1,NND+1)

CALL TFRMTX(CM(LOY) 9 ZM1 (L L) 4o NPD,NRD,2)

CALL GMINV(NDIMyNDIMZML4ZMc 9MRy1)

IF(MF.ENeNDIMY GO YO 15

WelITeE $7¢

WRITE(KLIST,112)

FORMAT (" ©1 MATRIX IS RANK DEFECTIVZ™)

CALL MATLST(ZM2 NNPR 4 NNPRy“PI”,KLIST)

CALL TFRMTX(CTLCLPIL1)4ZM2yNNDyNNDCy2)

CALL TFRMTXICTL(LPIL12) ¢ZM2(L2) yNNDyHRD,y1)

CALL TFRMTIX(CTLILPI21),ZM42(L3) NPDyNNDy2)

CALL TFRMTX(CTL (LP122)4ZM2(L&) 4NPDyNRDy2)

CALL COIF

IPI=4

RETURN

SUBROUTINF PIMTX

END
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SUBROUTINE COIF

COMMON /MAINL/NDIMyNDINMLCOMIL (L)
COMMON/NDIMOD/NNOyNRDoNPDoNMDyNDD 9 NWDo NWCD yNPLD 9o NWPNWDNNPR
COMMON/ZLOCD/LAP oLGP oLPHI yLBD JLEX S LPHD LAy LANJLOADyLCo LOY4LEYJLHPHLR
COMMON /DSNMTX/NVOM,NODY JNOEY,OM(1)
COMMON/ZLCNTRL/ZLPIL1,LPI12,LPI21,L°P122,LPHOL,LBOL
COMMCON/CONTROL/NVCTL,,CTL (L)

CALL TFRMTX{DMILPHI) CTLILPHADL) yNNC,NND2)
Li=LADCR(NDIM,1 ¢ NND¢1) ¢+LPHDL~1

CALL TFEMTXADMILBD) oCTLILLY 4 NNDyN&D,2)
LL1=LADORINDIMO NND4L1+1) ¢LPHDL~1

CALL ZPAPTICTLI(LL)JNRCyNNDINDIM)
Li=LADOR(NDIM,NND4L ¢ NND+1) +LPHDL =]

CALL IDONT(NRD,CTL(LL),1,.)

L3OL=LPHCL*NDIM®*NOINM

CALL ZPARTICTL(LBDL) ¢ NNDyNRD,NDIM)

Li=LADCR (NDIM,NND+1,1)+LBDL~1

CALL IDNTINRD,CTLIL1),1,)

RETUSN

SU3ROUTINT CDIF

SND
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SYBROUTINE SKkZGPI
COMMON/MATINL/NDIM,NDINML ,COML(Y)
COMMON/DE SIGN/NVCOM  TSAMPGLFLRPI JLFLCGT 4 LFLKF,LTEVAL 4LASORT
COMMON/FILES/KSAVE ¢ KDATAKPLOT KLIST KTERM

COMMON/SY SMTX/NVSM,SM (1)

COMMON/ZMTXL/NVYZM,2ML (L)

COMMON/ZZMTX2/7ZM2(L)
COMMON/NDIMD/NNDyNEDogNPDy NMDy NDDyNWDoNWCDoNPL Dy NHPNNT, NNPR
COMMON/LCNTRL/LPILL+LPIi22LPI23,LPI22,LPHLLLBDL
COMMON/CONTROL/Z/NVCTLCTL(L)
COMMON/LREGPI/ZLXONW,LUDHLPHCL JLKX,LK2Z
COMMON/CREZGPI/NVRPIKPI(1)

WeITC(KLIST,119)

FORMATY(///7741Xe5("% *) ,"REG/PI DESIGN™,5 (™ **)//7//)
NSIZZ=NRD* (2*NRD+NND) + NNPR*NNPR

IFINSIZZ.LELNVRPI) GO TO 5

WEITZ 4f 1 4NSIZE

FORMAT ("1 INSUFFICICNY MIMORY /CREGPI/, NEEZDT *,14)

GO T0 8

NSI7Z7Z=NNPES(TIENNPR+NPD)

IFINSIZELLENVYSM) GO TO 1

WARITZ 202 4NSIZE

FORMAT LT INSUFFICIENT MEMORY /SYSMTX/, MZEDS *,14)
LABORT=NS1I2E

REZTU®N

Lx=1

LU=L X+ NNPR*NNPR

CALL WXUSC(SMILX) ¢SMILU) yCOML 9ZML4ZM2)

LUIST=LU¢ NNPF®NRD

LPHP=L UTS T+NNPR* NNPR

CALL PXUP(CTL(LPHDL) oCTLILBOLY oSMILXY4SMLU) ,COML,2ZME,
4 SMALUIST) ¢SH(LPHP) 4 SMILX) 4ZM1)

CALL DRIC (NDIM,SMILPHF) 4ZM2,SMILX)3ZMI,RPLI(LPHCL))

CALL GCSTAR(SM(LPHP) JCTLILBOL) ¢SMILU) yZML,SMILUISTY SMILXD)yZM)
CALL TFRMTX(ZML +SMILX) 4 NRDyNDIM,1)

CALL FMMULLZMLCTL(LOT14) 4NRDoNNDoNNDyRPI (LKX))
LisLADDR(NRD,14 NND+2L)

CALL FMMUL(ZMLILL)Y CTLILPIZL) ¢NRDyNADHyNNTZZM2)
ND2IN=NRD

NJIMi=NDIM&L

CALL MADDAIINRDy NNDy RPTI(LKX) ¢ZM2 9 RPI(LKX) yis)
CALL FMMUL(ZML,CTLILPILZ2) NRDoNNDyNROyRPTI(LKZ))
CALL FMMUL(ZMAC(LL) 4CTLILPI22) yNRDyNRIJyNED,ZM2)
CALL MADDL (INRDyNRDyRPI(LKZ) »ZM24RPIILKZ) y1s)
CaLL MATLSTIRPI(LKX) S NRDyNNDy"KX*4KLIST)

CALL MATLSTI(RPI(LKX) gNRDoNNDy*"KX*yKTERM)

CALL MATLSTIRPI(LKZ) yNROJNRD ¢™KZ™,KLIST)

CALL MATLSTU(RPI(LKZ) 4NRDyNRD*"KZ*¢KTERM)
LFLRPI=1

LFLCGT=(

RETURN
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C END SUBROUTINE SKEGPI

1r
11

1.L

END

SUBROUTINE WXUS(XUeSeZML4ZM2)
COMMON/MAINL/NDIM NDI¥L ., COML (1)
COMMON/DE SIGN/NVCOM s TSAMPLFLRPIJLFLCGT JLFLKF4LTZVALSLABOKRT
COMMON/FILES/KSAVC s KDATA«KPLOToKLISTKTERM
COMMON/SYSHMTX/NYSM,SM(1)
COMMON/NDIVMD/NNDgNRDgNPCyNMO o NDDI ¢ KWO 9y NWCD JNPLD s NWPNR Dy NNPR
COMMON/LOCC/LAP LGP gL PHI gL BOLEXoLPHD 9L Ry QNyLADZLCyLOYLLEY,LKHPyLK
GCOMMONZOSNMTX/NVDM NODY,NOEY,,DM(1)
COMMON/ZLOCNTRL/ZLPILAWLFI2,LPI21,LFP122,LPHLL.LEDL
COMMON/CCNTROL/NVCTL,,CTL(L)
COMMON/LREGPI/ZL XDW, LUCHLPHCLJLKX o LKZ
COMMCN/CREGPI/NVRPILRPI(L)

DIMINSTION X(1)eU€L)oS(L),ZMLLL) ,7M2 (1)

DATA NO/41HN/

IF(LFLRPI) 545,11

L XDHW=¢

LUDW=LU XDW+2* NRD*NRD

LPHCL=LUCHeNRO*NRD

LKX=LPHCL +NNPR® NNPR

LKZ=LKX+NFDY*NND

LL=LPHCL=1

CALL ZPARTI(RPI,1,L2,1)

LUX=NSD*NREDeY

WRITE 171 ,NPD

FORMAT (** ENTER WEIGHTS ON OUTPUT DEVIATIONSt *=,12)

CALL RQUGTSLRPI 4NPD, )

NRITE 172 4NRD

FORMAT (" ENTER WIZIIGHTS ON CONTROL MAGNITUJESEt *,I1:z)

CALL ROWGTSIRPI (LUX) ¢NRDy1)

HRITS 41%3,+NRD

FORIMAT (** ENTER WEIGHTS ON CONTROL RATESt *,12)

CALL ROAWGTYS(RPI(LUCHW) ¢NRDy1)

CALL MATLST(RPI ¢NPDGJNPD ™Y ,KLIST)

CalLL DVCTOR(NPD(RPI,ZML)

CALL MATLST(ZML JNPD 1 ,"Y"KTERM)

CALL DVCTOR(NRD,RPIC(LUXY 4ZM1)

CALL MATLSTIZML JNRD 1 y"UM",KTERM)

CALL VATLST(RPI(LUX) ¢NRDyNRD ¢ "UM™KLIST)

NDIM=NNPE

NOIMi=ND]I Mol

CALL FOPMX(RPI,RPICLUX) (OMILC) OMILOY)sZM2,ZM1,C0M1)
HRITE(KTERM,114)

FORMAT(“{ MODIFY ELEMENTS OF *X? MATRIX (Y OR N) >*)

READ 111, 1ANS

189

|




p— " e A TI DT y  oey
- ¥ N . . L e . RS U ot T P S Aaniartaabe - » - s om R T e -

[P .
e S g

111 FORMAT(AY)
IF(IANS.EQ.NO) GO TO 22
WRITEAKTERM,1.5)

4%S FORMAT(™ LIST ¢X°¢ MATPIX TO TERMINAL (Y Ok N) >™)
RZAD 111, IANS
IF(IANS.EQ.NO) GO TO 12
CALL MATLST(ZM24NNPRGNNPR "X ¢KTERM)

ie CALL ZMATIN(ZM2 4NNPRyNNPRy=1)

iy CALL MATLST(ZM2 9 NNPR¢NNPR "X *,KLIST)
CALL MATLSTU(RPI (LUDW) yNRDyNRDy"UR™oKLIST)
CALL DVCTOR(NRD,RPI(LUIW) 4ZM1)
CALL MATLST(ZML,NRDyd,"UIK"yKTERM)
T1=,25%TSAMP
CALL SCALE(ZM3,ZM2,NDIM,NDIM,TL)
CALL DIAGI(NCIM,COMI,CTL(LPHDOL) s1e9le)
CALL MATIA(NCIM,NCIMyCOMLZMLi,X)
CALL MATIAINRDyNDIM,CTLILSDL) 4ZM1,2M2)
CALL MAY2A(NDIM,NDIM,COMI,ZMi,2Y41)
CALL MMUL (ZM1,CTL(LBDL) 4NDIM,NDIM4NT0,S)
CALL TFRMTX(KPI (LUDW) ,2M1 4NRDyND,y2)
CALL MADDL(NRDyNRDyZH249ZML U TSAMP)
RITUSN

C END SUBROUTINZ WXUS

END
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3 SUBROUTINE FORMX(QYoRY4CyDyXe21,22)
COMMON/NCIMD/NND 4 NSDyNP Do NMO ¢ NDD o NWO NWED JNPLD 9 NWPNWD ¢ NNPR
DIMENSICN QVEL) o RY(1),C(1),D(1) X (1),7411),22(1) iy
CALL FRMUL(QY,CoNPD,NPD,NND,21) i
CALL FTMUL(CsZ4L 4NPDyNND9NNDs22)

; :
o

CALL TFOMTX(Z24X4NNDyNND,2)
| L1=LAID? (NNPRSNND+1 4 NND+1)
| | CALL TFRMTX{RY,X(L1),NRDyNRDs2)

2 L2=LADDR { NNPRyNND#1 41)

s IF(NODY.EC.D) GO YO &

gi ' CALL ZPARTIX{L2) ¢ NkKDg NNDyNNPR)
s GO YO 15 .

! 5 CALL FTMUL(DyZL 4NPOJNPD,NND,2Z2)

CALL TFRMTX(Z2,X(L2)4N20,NND,2)
> CALL FMMULCQY +D4NPDyNPDyNRDy21)
:,] CALL FTMUL(DyZ1 yNOPDoNPD4NRDyZ2)
Le=n

00 12 I=1,NRD

LE=LADOR (NNPRoNND+1 s NND+1)

00 12 J=1.NRD

' Li=L1+1

L
N s

L2=l2+1
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XeLi¥=X(L1)eZ2(L2)
Li=L1+d

DO 27 I=1,NND
Li=LAOOR (NNPR,NND*1,1)
L2sLADOR(NNPR I NND¢1)
D0 2¢ J=1,NRD
XL2)=x(L1)

Li=l1+4

L2=L2+NNPK

RETUPN

SUSRAUTINE FOIMX

ZND

SUSBROUTINE PXUP(PHIDL +BOZL oXsUySeBUIBTyUISTyPHIPXP,ZML)
COMMON/MAINL/NDIM,NDIML,COML (L)
COMMOR/NDIMD/NND ¢ NRDyNPDyNMD 4 NDD ¢ NWD 4 NWDC o NPLDy NWPNNL o NNPE
DIMENSICM PHIDL(L),30ELI(1),X(1),U(L),S(4),8UIBT(1),UIST(L),
1 PHIP(LYXPIL),ZM1(1)

CALL GMINV(NRDyNRDyU+ZML yMR 4 1)

caLL MAT3I (NDIMyNRD,BDEL 4ZM1,BUIBT)

CALL MATE (ZML S NRD,NRDyNDIN,UIST)

CALL MMUL (BDELyUIST 4 NDIMNRDSNDIM,ZML)

CALL MADCS(NDIM NDIM,PHIOLsZM1,PHIP,~1,)

CALL MMUL(S,UIST,NDIM ,NIDyNDIMy7ZM1)

CALL MADDAINDIM NDIMy Xy ZML1 9y XPy=14)

RETURN

SUBROUTINE PXUP

END
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2 SUBROUTINE GCSTAR (PHIP,BOEL »UsRK 4 UIST ,GCS »ZM1) *
b COMMON/MAINL/NDIH,NDINL ,COML (1)
§ COMMON/FILES/KSAVE ,KDATA, KPLOT ,KLIST KT ERN
| COMMON/NDIMD/NND, NRD,NPD,NMDyNDD 4 NWDs NW LD 4NPL D » NHPNHD o NNPR
DIMENSION PAIP(L),BOEL(1)2UL1),RK L), UISTLISGOSIL)s2HL (1)
| CALL MATI2 (NKD, NDIM,BDEL sRKoZM1)
] CALL MADDA (NFDyNRDyZM1sUgZNy0)
CALL GMINVINRD,NRDyZN1,UsHRy1)
; GALL MATS (U,BIEL ¢ NRD o NRDsNDIM,ZH1) -
CALL MATS (ZM1,RK¢NRDyNDIM,NDIM,GCS)
CALL MMUL (GCSPHIP,NRCyNDIMy,NDIM,ZML)
b GALL MADOL(NFDoNDIMyZM14UIST4GCSo1a)
¢ WRITE(KLIST,131)
; 101 FORMAT (™ REG/PI GAIN MATRIX=-GCS™/)
: CALL MATIO(GCS,NRDyNDIN,3)
' RETURN
C END SUSROUTINE GCSTAR
3 END

%
L
3 "
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SUBROUTINE SCGT
COMMON/DE SIGN/NVCOM, TSAMP 4 LFLRPI JLFLCGT LFLKF,LTEVAL JLABORT
} COMMON/FILES/KSAVS,KDATA,KPLOT KLIST,KTERM
g [ COMMON/ZZMTXL/NVZM,Z41 (1)
' COMMON/ZZMTX2/ZM2(1)
: COMMON/NDIMO/NNC o NP Dy NPD9yNMI ¢ NDDI g NND yNHWDD JNPLD o NHPNRECy NNPR
' CCMMON/ZNDIMC/ NNC,NRC 4 NPC
§ COMMON/CMDMTX/NVCMyNEWCMyNODC,CM (L)
COMMCN/LREGPI/ZL XOWoLUNHoLPHCL yLKX oL K2
: COMMON/ZCPEGPI/NVRPILRPI(L)
' 3 COMMON/LCGT/LAL 1 LAL3,L 821 oL A23)LALZ,LA22,LKXALL LKXAL2,LKXAL3
L‘ r COMMOMN/CCGT/NVCGTCGT (1)
] ¥ IFINSWCM) 24924915
: 15 NSIZZ=(NND+2*NPD) *{NNC+NC+NDD)
0 IF(NSIZE«LEeNVCGT) GO TO 16
. WRITZ 4°6,NSIZE
LASORT=NSI2E
RITUSN
16 IF(NNDOGELNNC) GO TO 47
WRITE -7
GO TO 1®
17 IF(NNDeGE,NGCD) GO TO 19
WITS 1°8
18 L2Q0RT==y
RTTYRN
19  Legg=1
LA13=LAL1+NND*NNC
LA21=LAL3+NND*NDD
LA23=LA21 +NPD*NNC
LA12=L A23+NPO*NDD
- LA22=L AL2+NND*NRC
R LKXAL1=LA22¢NPDENRE
i LKXAL2=LKXALL +NPD*NNC
‘ LKXA13=LKXAL2+¢NPD*NEC
' CALL CGTA(CGT(LALL) yCOTILAL3) 4COT(LAzZYL) +COTILAZ3) ,CGTILALL),
1 CGTILAZZ) yZN1,ZM2)

i
TP 0. W T WP SRR W ST YR . -

|
t
)} i CALL COTKX(COGT(LAL4),CGT(LALI3),COTILA2L) 4 GTILA23) (COT(LALSY,
&L i CGTILA22) COTILKXALL) 4COTILKXAL2) 4COTILKXALZ3) 4RPI(LKXD)

o LFLCGT=1

R 136 FORMAT(*r INSUFFICIZNT MIMOPY /CCGT/, NEEDS "o Is)
. A 177 FORMAT(™CFEWER DESIGN MOBEL THAN COMMANG MOJEL STATES™)

= 178 FOIMAT("FEWER OSSIGN MODCSL THAN DISTURBANCZ MODSL STATES™)

R RETURN

! € END SUBRNUTINE SCGT

- ( END .




SUBROUTINF CGTA(ALL,AL13,A24,A234ALZ+A22,ZM149ZM2) '
COMMON/MAINLI/NDIM NOIML ,COML (Y1)
COMMON/FILES/KSAVE ) KDATAJKPLOT JKLIST KTERM
COMMON/SY SMTX/NVSM, SM(1)
L COMMON/NCIMD/NND o NRD o NPDy NMO 4NDOD ¢ NWD s NWDD s NPLD o NWPNHD, NNPR
Vo COMMON/LOCO/LAP o LGP sLPHIoLBDJLEXoLPHD LD yLANGLQDyLCHLOY 4L ZYH,LHP,LR
- COMMON/DSNMTX/NVOMe NODY,NOEY,NNM( 1)
! COMMON/NDIVC/NNC,NRCyNPC
: COMMON/LOCC/LPHC,LBDC,LCCHLDC
. COMMON/CMONTX/NVCMyNSHCM,NODC,CM (1)
L4 COMMON/LCONTRL/LPILALWLFIL12,LPI21,LPIZ2,LFHCL,LLBDL
COMMON/CONTROL/NVCTL,,CTL(2)
DIMENSTION AL11 (L) oAL311),A21 (1) AZ30L) gAL21L)4A2201)4ZMI(L)ZM2(L)
N2IM=NND
NDIML=NDTIMeL
CALL TFRMTX(CMyZM1,NNCyNNC,2}
CALL SUBI (ZM1.NNCNOIM)
CALL FMMULICTL(LPII2) JCMILCC) ¢NNDJNRDyNNC,y,ZM2)
CALL SCALE(ZM2yZM24NNDyNNCy=14)
N3=MAX2(NOCyNNC}
L2=1+NND*NND
LI=L2+NND3NE
L4=L3+NND*NB
LE=L4+ NNG®NND
L6=LS ¢ NNDENND
NSI7E=LE6+NPO*NNC=1
IFINSIZZEJLESONVS™) GO TO 4
WRITE 17 +NSIZE
492 FORMAT(™" INSUFFICIENT MZIMORY /SYSMTX/, NEcDE 4 14)
LABOST=NS12c
RTTURPN
1 CALL AXBMXCICTLIL®IL11) 4 NND¢ZML4NNC9ZMZ 9AL1,SM,
L SMIL2) +sSMILI) s SM(LGL) ySM(L5))
CALL MMUL (A131,ZML ,NNDyNNCyNNC,ZM2)
CALL FMMULLICTLILPI2L) 4ZM2,NPOsNND(NNC,2021)
CALL FMMULICTLILPIZ2) JCMILCL) ¢+NPDyN=O4NNC,SM(LB))
CALL FMMULIALL,CMILIDC) yNND¢ NNC yNRC 4 S®)
CaLL FMMUL(CTL(LPIZL) oSM,NNDyNNIyNRC,ALZ)
CALL FMMULICTLILPIZ21) ySYyNPDyNNDsNRC,A22)
IF(NCDCJ.EQed1) GO YO 2
CALL FMMULICTLILPILZ) 4CMILDC) oNND o NRDyNFCoSMIL2))
CALL FMANDIAL2,SM(L2) 4yNNDyNFGCyAL2)
CALL FMMULICTLILPIZ22) sCMILDC) 4MPDJNRDYNRCySM(L2))
CALL FMADD(A22,SM(L2) 4NPDNRGCyA2Z22)
2 IF(NDDLEQ.V) GO TO 15
CALL MMUL(CTLI(LPIL1) yOMCLEX) JNNDJNNDO4NDDyZM2)
! IFI(NOEY.ECs1) GO TO &
CALL FMMULICTLILPILZ) +OM(LEY) JNNDJNRDJNDOD,ZM1)
CALL MADDL(NNIsNDD9gZML4ZM292ZM2,41 )
5 CaLL TFRMTX(CMILPHD) 4 ZM14NDDyNTD,2)
“ ' GALL SUBI(ZML,NDD,NDIM)
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CALL AXBMYC(CTL(LPIL11) NNDyZML yNDD9ZM24AL5oSMy
1 SMIL2) 4 SMHILI) 4 SMILL)Y ,SM(LS))

CALL MMUL (A13,ZM1 +NNDyNDD,NDD,2ZM2)

CALL MACDI(NNDoNDDyZM2,CM(LEX) 9ZM24y~1,)
CALL FMMULICTLILPIZL) sZM2,NPD,NND,NDDyA23)
NOIM=NPD

NDIMI=NDIMed

CALL MADDL(NPIGNNC,A21,SMILED) 142141 4)
IF(NOEYLEQ.1) GO TO 27

CALL MMUL(CTL(LPI22) DMILEY) JNPD,NRD,NDD,yZM2)
CALL MANDI(NPD,NDD,A2T42ZM1,A235-1,)

CAaLlL MATLSTU(ALL JNNDJNNC,*ALL"yKLIST)

CALL MATLST(A2L 4NPDSNNC,™A21",KLIST)

CALL MATLST(AY2 NNDyNRCs*™AL12%,KLIST)

CALL MATLST(A22 4NPD¢NRCy™A22"KLIST)
IF(NDDGTSL) GO TO 25

WOITE(KLIST174)

FOIMAT (" MATRICES AL3 AND A23 ARE ZcR)D™)
QETURN

CALL MATLST(ALI yNNDJNDDs™AL3*,KLIST)

CALL MATLST(A23 ,NPD,NCD,"A23"4KLIST)

R TUSN

C EMND SUBROUTINE CGTA

an

15

END

SURRQUTINE AXBMXC(AZNAJByNByCoXyAUsBUyR$Z1422)
COMMON/MAINL/NDIM,NDIML,COML (1)
COMMON/FILES/KSAVE KDATASKPLOToKLISToKTERM

DIMINSION A1) B(1),CUI) X2 AUL)4BULL) RIL)ZL(2) 4Z (1)

DETA =MLY (ITMAX/1 sE=6,43/

CALL TRANSLINA,A,Z1)

CALL SIGIN(NAZ19Z29Z2(NDIMI),yAU,1)
C4LL TRANS1(NA,COMv1,Z1)

CLLL EIGENINB,Bo72,Z2(NDIML) ,BU,1)
CLLL ZQUATE(F 4,CyNAyNB)

IT=»

CeLL MATLACAU,RyNANR,NB,yZZ)

CALL “AT1(Z29BUysNAJNB,NByR)

CALL SLVSHR(Z14NA,COM1,NBsRyNCIM)
CALL MAT4 (Ry,BUyNAJNB,NB,Z2)

CALL MATL (AUyZ24NAyNAZNR,R)
IFCIT.GTe7) GO TO 15

CALL EQUATE(X,RyNAyNB)

GO To 3

CALL MADDIU(NANB XgReXgl,)

CALL ENORMI(RyNA4NByZN)

IF(EN,LEos EMAX) KRETURN
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IF(IT.LTLITMAX) GO TO 3°
WRITE(KLIST,1.1) EN
WEFITS(KTERM,191) EN
131 FORMAT(*C SOLUTION £RROR FOR *A°(CGT) AFTER 3 ITERATIONS = *,iPt15,
17)

RETURN

CALL MATI (A XoNA¢NANB,Z2)

CALL MAT1(Z2,8,NANByNB4R)

CALL MACDAINAYNB XyRyRy=2s)

CALL MADDI(NANB,yRyCyRyie)

IT=IT+1

GC T2 {.
C END SUBROUTIME AXBMXC
END

TP (TR PP T TIPS S e e s e
w
[ 24
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SUBROUTINE SLVSHR{ANA,ByNByCsND)

: COMMON/MAINL/NDIMINDIML ,COMI (1)

E, . COMMOMZINOQU/ZKING KJUT g KOUNCH

- . DIMINSION AIND 1) ySINC1)sCUNT,1) 4V (16) oW (L)
] L=1

| E 5 LMi=L-1

DL=4

IF(L.EQ.NE) GO TO 8

3
3 IF(B(L+1,L)eNESLe) DL=2
8 LL=LMLeDL
N
- 17 KM1=K=1
R DK=14
% E IF(KeC0.NA) GO TO 12
IF(A(K K+1) aNZGM o) DK=2
! 12 KK=KM1+0K
; AKK=A(K,K)
Y | 8Ll=8(L,L)
-4 IF(CL.EN, &) GO TO 35
k1 IF(0XeEQe2) GO TO 27
5 > 3 IF(LezQe4) GO TO 13
I CUK LIZC (KoL) =AKK*DOTI(LMLIC(Ky2) 4BLLyL)) 1

ﬁ- 3 13 IFi{Kec0el) GO TO 18 !

' DO 15 I=1,KM2: i

15 CIKoL)I=CUKeL)=A(K,I)*DOT3(L,C(Is1)+sB(1,L)) |

18 V(i)=AKK®*BLL=1, =
IF(V(L1).EQe%e) GO TO 99
CIKeL)=C (Kol )7V L)

: G0 TO 9%

! 2" IF(L.EN.L) GO TO 22

I1=K

’ I2=KK ‘

st o b
T TP
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42

45

LR
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I3=LMl
GO T0 24

IF(KsEQel) GO TO 3C

Ii1=1

I2=KMy

1=

DD 28 I=11,I2
V(19=00T3¢I2,C(I,1),8(L,L))

CIK L)=CUKeL)=A(K,I)*V (Y1)
CUKKoL)=C (KK L)=A(KKyI)*V (1)
IF(I1.5Q,X) GO TO 22

V(1)=AKK*BLL=1.

VI2¥z=A (KK,K)*BLL

V(3)=A(KyKK)*BLL

VIG)=A(KK,KK)*BLL=1,
VIS5)=1.7(VI3)*VIL)=V(2)*V(3))

VIB)I=VIS) * (CUKyLI*V(L)=V(3)*C(KK,L))
CIKK LISV IS)*(V(II*C(KK,L)=V(2)*C(K,L)})
CiK,L)=Vie)
GO0 Y0 95

IF(CK.EQs2) GO TO 5°

IF(L,2Qe31) GO TO 38

1=K ;

I2=xK

I7=1M
G2 70 &°

IF(K.S0Q.1) GO TO 45

I12=KM1

I2=LL
D0 42 I=11,12

CUK L) =CUKyL)=A(K,T)*D0T3(I3,C(I41),yB(1,L))
CUKoLLI=CUKyLLY =A(K,I)*DOT3(13,C(I,41)9B(2,LL))
IF(I$.2C.K) GO YO 38

VIi)=AKK*BLL=-1,

VI2)I=AKK*PR(L,4iL)

VI3II=AKK*S(LL,L)

V(s)=AKK*E(LLyLL) -1,
VIS)I=LleZ(VIL)®V (W)= (2)?VY(3))

VIB)=VIS) *(CIKy LI *VILY=V(3)*C(K,LL))
CIK LLI=ZV(S)*(V(LI®C(K,LL)=VI2)*C(K,L))
CiK,L)=Vv(e)
G0 TO 9%
IF(L,EQs1) GO TO 55
V(1)=DO0TI (LML, C(KyiY,B(4,L))
VI(2)=D0T3(LML,C(KKy1)48(1,L))}
VI3)=DOTI(LML,C(Ky1),4B(3,LL))
V(e)=DOTI(LML,CIKKs1),B(1i,sLL))
CUK L) =C(KoeL)=AKK*V(1)=A(K,KK)*V (2]}
CIKKyLI=C KKy L) =A(KKK)*V(L1)=A(KK,KKI*V(2)
CUK LLI=C UK LL) =AKK*V(3)=A(KyKK)*V(G)
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E . CIKK LLIZCIKKoLL) =R EKK,K) ®Y{I)=A KKy KK) *V (L)
F 55 IF(KeEQ.1) GO TO 6%
e D0 62 I=1,KMY
V(1)=00T3(LLyC(I+4),8(1,4L))
VI2)=DOTTILL,C(T,1)Bl1,LL))
CUKoL)=CIK,LY=A(K,I)*V (1)
CUKKyL)=C (KKyL) =A (KKo ID*V (1)
CUKLLIZC (Ko LL) =A (Ko T)*V(2)
6F  CIKKsLL)=CIKK,LL)=A(KK,I)*V(2)
65  V(41)=AKK*BLL=1,
V(2)=A (KK,K)*BLL
VIT)=AKK®*B(L,LL)
VIL)=AC(KKsK)*BILyLL)
VISI=A LK, KK)*3LL
VI6)I=A(KK,KK) *BLL =2,
VI7)=ALK, KK)*B(L,LL)
V8I=A(KK,KK)*B(LyLL)
V(9)=AKK*B(LL,L)
VIL1)=A(KK,K)®B (LL,L)
VIL1)=AKK*B(LLyLL) =1,
V(12)=A(KK,K) #3LLL,LL)
VIL13)=A(K4KK) *3(LLyL)
y VI16)=A(KK,KKI®*BILL,L)
3 V(45)=A(KsKK)*BILL,LL)
| VIL6)=A(KKoKKI*3C(LLyLL) =1,
§ W(1)=C(K,L)
[ W(2)=C (KK L)
: W(3)=C(K,LL)
: Wlu)=0(KK4LL)
-k N3S=NOIM
E NDIM=§
NIIML=NDT Meg
! CALL DOOLIT(4,VoWsloISG)
NDIM=NDS
o NDIML=NDIM+L
| g 95 K=K+DK
Vol IF(K.LE.N2&) GO TO 1°
4 L=L+DL
' : IF(LeLESNE) GO TO 5
ok RZTURN
99  WPITE(KOUT,4M1)
! RETURN
; 104 FORMAT(™!® ® % ZRIOR IN CGT SOLUTIOND Al1=>A23")
C END SUBRBUTINE SLVSHR s
EMD
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. SUBROUTINE ENORM(A,NRyNCoENRM)
; COMMON/MAINL/NDIM,NDIML,COML (L)
3 ; DIMINSION A(1)
4 ! ENRM=",
o NZ=NC*NDIM
: DO 1f I=41,4NR
i DC 1™ J=INZ4NDIM
i0 ENRM=ENRM+A(J)I*A (N
ENIM=SQART (ENRM)
RETURN
C END SUBRNUTINE ENORM
EMD

,,
g I e

Rl aial

SUSROUTINE CGTKX(ALLyAL3+A21 4A23,A12,A2:¢RKXALL JRKXAL2 ¢ RKXAL S g RKX) !
COMMON/MATNL/NDIMoNDIML,COML (1)
COMMON/FILES/KSAVE ¢KDATA,KPLOT 4KLIST oK TERN
COHHONINDIMDINND,N°D,NPD,N$D,NDD.NND.NHDD.NDLDQNHPNHD,NNPc
COMMON/ND IMC/NNG, NRC 9 NPC
DIMINSION A12(1)9A23(1)A21(1)+A2304),822(4) 4422020,
1 TKXA11045)4RKXALZ (1) oBKXAL3 (1) 4RKX(L)
|} NG IM=NRD
NDIN1=NDIMs4
CALL FMMUL(RKXoA14,NRCyNNDyNNCyRKXALL)
t CALL MADDIINRDIZNNCoPKXAL19A244PKXALLs2,)
E CALL MATLSTIRKXAL11,NRCoNNC,*KXM" ,KLIST)
CALL MATLST(RKXAL14NRDsNNCo*KXM*™ KTZRM)
‘ ¢ CALL FMMULIRKXyA129NRD o NNDyNRCyRKXAL2)
! ; CALL MADD1(NRD,NRCyRKXAL2,A22,RKXA12+44)

Lo o

CALL MATLST(RKXAL129NFDsNRCy*“KXU*$KLIST)
CALL MATLST(RKXAL2,)NF Dy NRCy*KXU* 4 KTIRM)
IF(NDG.LT.1) RETURN
CALL FMMUL (RKXyAL34NFDyNNDyNCDyRKXAL3)
CALL MADLI(NRDyNDDyRKXAL13,A23,RKXA13,44)
CALL MATLST(RKXAL34 N~ DyNDD 9= KXN™ KL IST)
CALL MATLST(RXXAL3,NRDyNDD " KXN*"yKTIRM)
RE TURN

C FND SUBROUTINI CGTKX
END

s Ao b
el -
——— Bt e o

M
R

199




.

g

R Tt N el Rl

TP Wy e

WO T,

YT VW I

S §¢
1

17
18
FL

25

26

28

SUBROUTINE CEVAL

GOMMON/MNAINL/NDIM,NDIML,COML (1)
COMMON/ZINOU/ZKINKOUTKPUNCH

COMMON/DE SIGN/NVCOMy TSAMP  LFLRPIJLFLCGT 4 LFLKF,LTEVAL oL ABORY
COMMON/FILES/KSAVEGKDATAKPLOT ¢KLIST KTERM
COMMON/SYSMTX/NVSMy,SM (L)

COMMON/ZMTXL/NVZM,ZMS (1)

COMMON/ZMTX2/ZM2(1)
COMMON/NDIMD/NNDy NROy NPOyNMD yNDDoNWOyNHDD g NPL Dy NHPHH Dy NNPR
COMMON/NDIMC/NNC, NRCy NPC
COMMON/LREGPI/ZL XOWoLUCKH L PHCL 4LKX 4L X2Z
COMMON/CFEGPI/NVRPILRPI(1)

DIMENSICN NPLOT(2) 4 NVPLOTIL7 ) oNS(6) JLSCL(C) HZITITLE(5)
DATA NC/iHN/

WRITE(KLIST,115)

FORMAT (/27771135 1™% ™) ,"CONTROLLER SVALUATION®5(* **)/7/77/)
I”0LE=1

NVOUT=NRD+NPD+L

IFC(LFLCGT) 17+17,145

HW=ITZ 176

READ*, TUM,VUM

IFCIUMLT 1) GO TO 7%

iF(IUM GT«NRC) GO TO 45

NVOUT=NVOUTeNPC

NF=NNC

GO T2 48

IFC(IPOLELEQes) CALL POLES(RPI(LPHCL) JNNPR,byZML1,ZM2)
NP=?

CaLl VOUTICU(SMyNVFLOT ¢NFLOT4,NVOUT,LSCL)
IF(NVOUT,.EQ.l) GO TO 7"

WoITZ 178

RZAD*,TEND

TFITENDY 2uy92.,25

LVYX,S=NVOUTey

LXT=L VX +NVOUT

LX4=LXY&NPLD

LXM=L X4+ NPLD

LX ML= XM, +NP

NP=LXMY+NF

DO 2€ I=LVXG,NP

S¥{I)=13,

CALL CTRESPISMILVYX®) ¢ SMeSMILXI) o SMELXL) o SMILXM. o SMILXMLY,
4 ZML G NVOUT,TENDyIUM,VUM,NST)

WRITE(KTERM,171)

READIKIN,172) ITITLE

M=STISNST

D0 &% I=31,2

NS{i)=1

DO 28 J=2,6

NS(J)=NS(J=1)+51

NO=NPLOT(I)

200

E




Asamtis

bt .ii-.x_‘.' LR sk

e SPIPeT 3 T~ g - e -

s AN A

e

Y

TR PR Y

3¢

&"

L2

45

L
1

55

to

57
58

IF(NP,EQ,") GO TO &)

NPPi=NP+1

RIWIND KPLOT

NSys5* =4

CALL RPLOTF{ZM1,NVOUT,IERR)

CALL STFPLTISMyZMLi,NS,NVPLOTINSV) yNP,NVOUT)
DO 35 Jy=1,M

CALL RPLOTF(ZML,NVOUT,IERR)
IFC(IZFR.EQel) GO TO &4°

IFIMOI(JoNST) (NEL:) GO TO 35

DO 3, K=31,NPP1

NSIK)=NS(K)+3

CALL STEPLT(SMyZML NS NVPLOT (NSV) 4NF4NVOUT)
CONTINUE

CALL PLOTLP(Si NP SHLSCLII) 314 oKTZIRM,ITITLE)
CONTINUE

NYM=NYCUT=-14

M=NVM/5

NI=5%v

IF(MezQsC) GO TO 50

DO 5% I=41,N3I,5

HE(L)=1

DO 4Z J=246

NS(JI=NS(J=1) ¢4

/[YIND KPLOT

NVS=I=-4

D0 45 J=1.5

NVPLCT (J)=NVS+J

DN 5° J=1,1314

GALL RPLOTF(ZML4NVOUT,IZRR)
IF(IERR.EN.Y) GO TO 55

CALL STRPLT(SYyZMI,NS,NVPLOT 45, NVOUT)
0O 48 K=1,6

NS (K)=NS{K)+1

CONTINUT

CALL PLOTLPIL31959SMe29192ioKLISTLITITLED)
CONTINUE

NVM=NVYM=NE

IF(NVMeLTH1) GO TO 7°

NPPi=NVYMe+ 3

NS(1)=1

DO 57 I=Z2,6

NSEI?=NS(I=1)¢1%1

DN 58 I=31,NVM

NVPLOT (I) =NEel

REWIND KPLOY

00 65 I=1,1.4

CALL RPLOTF(ZML4NVOUT,IZRR)
IFCIZSRR.,EQeL) GO TO 77

CALL STRPLT(SMy ZML NSHNVRLOT ¢ NV, NVOUT)
00 6% J=1,NPPY
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NSCJI=NS(J)+d

CONTINUE

CALL PLOTLP(11 JNVMySM91 4141 oKLISTLITITLE)

WEITE Qna

READ 111, IANS

IF(IANS.EQeNO) RETURN

IeoLE="

60 70 1"

FORMAT (* 4%44%("=") 4™ ENTER TITLE IN GIVIN FIELD Tyl ("=")y"¢>/)
FORMAT (5A19)

FORMAT (™2 MORE TIMZ RESPONSE RUNS (Y OR N) >*)

FOOMAT (*f ENTER MODEL INPUT AND STEP VALUE 3 1 >*)

FORIMAT (" ENTER TIMZ DURATION FOR RESPONSE, IN SZCONDS »*)

FORMAT (A2) '
SUBROUTINE CEvAL 1
ENO

SUBROUTINE YOUTICI(VICNVPLOT 4sNPLOT,NVOUT,LSCL)

COMMON/DZ SIGN/NVCOM s TSAMP LFLRPILLFLCGT oLFLKF 4 LTZVALS,LAIORT
COMMON/FILZS/KSAVE s KDATAJKPLOTH KLIST«KTERM

COMMON/NC IMD/NND 4 NED o NPDyNMD ¢y NDD o NWD ¢ NWDD yNPL Dy NWPNWDy NNPR
COMMON/NCIMC/NNG g NRCyNPC

COMMCN/ZNDIMT/NNT o NET g NMToNHT

DIMINSION NPLOT (L) NVPLOT(1),VIC(L) ,10UT(S),LSCL(C)

DATA TOUT/AHX1HY sLHUGLHM,1HD/

IFILTEVAL) 2,295

NVS=NND

NV=NFLD

GO TO 8

NV=NMT

NVS=NY b
NVOUT=NVOUTeNY

PO 9 I=1,NVOUT

VIS(I)=",

NVU=NVeNPD

NVM=NVUSNED

HRITE 47 L ,NVS

FORMAT (*r ENTER STATZ AN? IC VALUE (/7 TERMINATES)E: *,12," >™)
READ®,IV,V

IF(IV.LTW41) GO TO 15

IF(IVeGToNVS) GO TO 1°

VIC(IvV)=V

G2 TO 12

ICCILFLCGT LT el ) e ORe (LTEVALSEGCeL) e ORe(NDD.LTo1)) GO TO 25

LO=4

NRITE 4102 ,4,NDD

FORMAT (™ ENTER DISTURBANCE IC VALUE (.7 T.RMINATES)S *,I2," >»™)

202




L NS S5

T
[ > by

2t  RTAD*,1V,V
IF(IVeLT.1) GO TO 26
IF(IV,GT.NOD) GO TO 1%
VIC(NND+IV)=V
GO TO 20
25 LD=n
26 WRITE 1°3
AC3 FORMAT(™ 2 PLOTS OF £ VARIABLES MAY BE PRINTED AT THE TERMINAL ~-
1SPSCIFY NUMBER FOR EACH (Ni,N2) >) !
RZAD*, NPLOT (1), NPLOT(2) ?
IFINCLOT(31),6GT,5) NPLCT(1)=5
IF(NOLOT(2).6To5) NPLOT(2)=2S
IFCINPLOT (1) e6T o) oORe (NPLOT(2)4,GTs )) GO TO 27
NVOUT=%
RITURN
27 W2ITE 14
£74 FORMAT(*™ ENTER OUTPUTS BY TYPC AND INDZX iN 2 ENTRIES==TYPES ARI*™/
4 " STATE & OX®%/% QUTPUT ¢ *Y®™/" INPUT t *y**)
IF(LFLCGT) 3¢ ,33,2°
8 WOITE 175
LS FORMAT(™ MODEL t *M*")
IF(LD.EQs1) WRITE 176
k 176 FORMAT(™ CISTURBANCE t *Q°")
k- 33 09 & I=1,2
{ NS=NOLOT(I)
IF(NC.LTe1) GO TO 41
LSCLIIN =2
NS=5%(1~1)
3 WEITZ 1%7,1
e 417 FNIMAT(™.SLOT *“,12)
N DO 29 J=1,NC
! NSP=NS+J
2L WFITE 47 8,J i ]
178 FORMAT (™ OUTPUT =,12," >*) s
A0 111,31V
W ITE 113
113 FOIMAT (11 X,™>")
]RTA9%, 10
i IF(IVeNE, IOUT(L)) GO TO 32
4 IF(I0.GT.NVS) GO TO 38
NVPLOT (NSP) =10
G0 TO 39 j
i 32 IF(IVeNZ.IOUT(2)) GO TO 321 i
IF(I0.GT.NPO) GO TO 28
NVPLOT (NSP)=NVeIO0
GO TO 39
321 IF(IV.NE.IOUT(3)) GO TO 33
IF(I0.GT.NRD) GO TO 28
NVPLOT (NSPI=NVU+IO
GO TO 39 ]
‘ 33  IF(LFLCGT<LTei) GO TC 31
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39

11
L3

L7

“bd

by

L5

111
112
C END

e s At T T PR

IFUIVoNEL,JOUT(4)) GO TO 34
IFLI0.GT.NPC) GO TO 38
NVPLOT (NSP)=NVM+IO
LSCL(I)==1

60 TOo 39

IF(LOJNE, i) GO TO 3¢
IFLIVeNE,IOUT(S)) GO TO 31
IF{I0.GTe NDD) GO TO 38
NVPLCT (NSP)I=NVSeIO

G0 70 3o

WSITE 179

FORMAT (= INDEX TOO LARGE™)
G0 10 3%

CONTINUZ

CONTINUZ

NVMi=NVOUT=y1

NP="

DN 57 I=1,NVMi
M=M00(({I=-1),5)+1
IF{MeGTal) GO TO 41
NS=NP+{

WITE(KLIST,18%) NP
FORMAT{™. FLOT *,12)
IF(I.GT.NVS) GO TO 62
Iv=ICOUT(1)

I0=1

GO TO &5

IFC(I.GToNV) GO TO 43
Iv=I0UT(5)

I2=1=NVS

GC TO 45

IF(IGTaNVU) GO TO 441
Iv=I0UT(2)

Io=I=NV

GO0 TO 45

IF(I.GT.NVM) GO TO &&
Iv=I0UT(3)

I0=I=NVU

GO T2 &5

Iv=I0UT(&)

I0=I=NVM
WEITE(KLIST,112) M,IV,IO0
CONTINUE

RTTUAN

FORMAT (A1)

FORMAT(™ QUTPUT "4124" 8 “9Al1,12)
SUBROUTINE VYOUTIC

END
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SUBROUTINE CTIESPUVXD s VXL 9 XD ¢ X1 9 XMZ o XML 9 ZML g NVOUT o TEND» IUM, VUM,
1 NST

COMMON/DZ SIGN/NVCOM, TSAMP o LFLRPIJLFLCGToLFLKF L TEVALLABORT

COMMON/FILES/KSAVTyKDATAyKPLOTKLIST,KTERM

COMMON/NDIMD/NNDyNROy NPy NMD o NDD9 NN o NWODyNPLD o NWPNWD» NNPR

COMMON/ZLOCOD/LAP LGP oL PHIoLBDyLEX o LPHD LOoLONJLQD 9L CoyLOY yLEYJLHP,HLK

COMMON/OSNMTX/NVOM, NODY ,NOEY,CM(1)
COMMON/NDIMC/NNC ,NRC 4 NPC

COMMON/LOCC/LPHC +LBDC,LCCHLDC

COMMON/CMOMTX /NVCMyNEWCM4NODC,CM (L)
COMMON/ZLOCT/ZLPHT yLBDT o LADT oL HTyLRTHLTDTSLTINT
COMMON/TOUMTY /NVTM, TM (L)

COMMON/ZLREGPI/ZL XOUW,LUDNLPHCL yLKX L K2Z
COMMON/CSREGPI/NYRPL 4RPI (L)

DININSION VXTI (L) UXLCL) o XD (1) o X1 1) o XMy (L) XMLCLY2ZML(Y)
NSTPO= 4 13 *TEND/TSAMP+,5

NST=2 .

IFI(NSTPO.GE.1) GO TO 1

NSTPO=4

NST=¢

NSTZPS=41 /. *NSTPO

IF(LFLCGTWENed) GO TO 2

LMO=NVOUT=NP(

IF(NDCeEDQeT) GO TD &

LNeGr=1

GO T §

LMO=NVOUT

LATGT="

LU=LMO-NF T

LSO=LU=NFD

NVX=LS0=-1

IF(LTZEVAL) B46,1"

on 7 I=1,MNVX

X2 (I¥=vxy (1)

60 TO 12

CALL XFOT(VX4,X1,L0CGTH

NNTFi=NND +4

RIWIND KPLOT

CALL YDSNIX1,VXLCLU) ,DM(LC),DM(LDY),LDCGT,VX3(LSO))
IFCLFLCGTLEQe1) CALL YSMDUIXMLGIUMWVUMyCMILCC) CMILDC)
1 VXxi1tLM0))

CALL WPLOTF(IVXi, NVOUT)

DD 1.4 IT=4,NSTEPS

CALL URFPIIRPICLKX)yRPI(LKZ) sDM(LC) sOMILDY) o XS oX1oVX (LU, VXI(LU))
IFLLFLCGTY 2. 924945

CALL UCGT ILVXLELU) oUXL (LU g XMT o XML o X INNDPL) o ZML ,TUMa VUM, IT)
CALL CUPTATIXMI yXML,IUM,VUM)

CALL FIMT X(VXLELU) VX (LU) ¢NRD,1)

CALL FTIMTXIXL,X34NPLD,1)

IF(LTEVAL) 25,425,3

CALL DUPDATIONILPHI) DMILBO) oDMILPHI) yDMPILEX) o XL o X1y
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2 1 VXL¥X"(LU) 4 LDCGT, NNDPYL)
E GO 1O 35
- 3 CALL TUPDAT(TM(LPHT) o TMILBOT) 4 VXL 4¥X1,VX, (LUD)
- CALL XFDT (VX1 .X1,LOCGY)
;! 35 IF(MOD(ITyNSTPO) ¢NZ o) GO TO 10(
- VX4 (NVOUT)I=TSAMP*FLOAT(IT)
%‘ : CALL YODSNUIXL4VXLCLUY ,OM(LC),OMILDY) LGCCGT,VX1(LSO))
- N IF(LFLCGTEQe1) CALL YCHMD(XM1,IUM,VUM,CMILCC),CM(LDC),
4 VXL(LMO))
CALL WPLOTF(VYXL,NYOUT)
10<  CONTINUE
ENDFILE KFLOT
: RTTUSN
: -’ C END SUBROJTINE CTRESP
ﬁi S END

S'YBROUTINE DUPDAT(PHI 43N4PHICEXeXJ s XL 9VXisUl oLDCGT4NNOPL)
COMMON/MAINL/NDIM,NDINL ,COML (1)
COMMON/NDIMD/NNDy NRDy NPDSNMD yNDDogNHDyNWDDgNPLDy NWPNA Dy NNPR

N DIMENSION PHI(L) ¢BC (1) 4PHIDCL) X (1) oXo (1)e X2 (1) VXILL),UL (D)

NNYM=NND

: NIIM1=N3IMeq
' CALL FMMUL(BD U™ yNNDgNRDyigeX1)

2 CALL MMULS(PHI X" ¢yNNDyNND,y1,X1)

E IF(LNCGTL.EQ.*) GO YO 13

» CeLL FMMUL(PHID, Xu(NNDPL) NODyNDD 14Xl (NNDPL))

SN CALL MMULS(EX X4 (NNIPL) ¢yNNDyNDDy1,X2)

E ; 1 CALL FTMTX(XL,VXi,NPLD,y2)

! RTETURN '
Vo C END SUBROUTINE DUPHAT
END
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SUBROUTINE CUPDAT (XM ¢ XML ,IUM, VUM)
COMMON/ME INL/NDIM,NDIML,COML ()
COMMON/NDINC/NNC yNRCyNPC
COMMON/LOCC/LPHC +LBOCHLCCHLDC
COMMON/CMDOMTX/NVCM, NZWCMyNODC,CM (1)
DIMENSION XM{ (1) ,XM1 (1)

NDIM=NNC

NDIM1=NDT M+

CALL FTMTX(XML4XM.i4gNNCe1)
Li=LADDR(NNCols JUM) +LBDC=4

CALL VSCALE(XML,CM{LL1)4NNC,VUM)
CALL MMULSICMILPHC) ¢ XM s NNCy NNCyLyXM1)
RITURN

SUBROUTINE CUPDAT

[ 3]

SUBROUTINE TUPDATIPHI#BD, VXL 4V¥X1,Ui)
COMMON/MAINL/NDIM,NDI¥L,COM1 (1)
COMMON/NDIMT/NNT o NRT g NMT4NNWT
DIMENSTION PHI(1) 48D(1),VX, (1) ,VXLLI),U. (Y1)
NDIM=NNT

NOIMLI=NDTI Meg

CALlL FTMTXIVXiy VXL gNNTH1)

CALL FMMUL(BD,U" g NNT,NRT,1,V¥X1)

CBLL MMULSIPHIsVX. gyNNTyNNT,1,VX1)
R=TUN

SUBROUTINE TUPDAT

END
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SUSKOUTINE XFIT(V,X,LOCGT)
COMMON/NDIMD/NNDyNF Dy NPOD o NMD o NDD g NHDyNWDD yNPL Do NWPNHD s NNPKR
COMMON/NDIMT/NNTy NET o NMT 4 NNWT
COMMON/ZLOCT/ZLOHT JLBOT yLODTGyLHT LRTLLTOTHLLTINT
COMMON/TRUMTX/NVTM, TM(1)

DIMENSION VI(1),%X 1Y)

CALL FMMULCTMILTDT) gV, NNDyNNT,1,X)

IF(LDCGY,EQ.0) RETURN ,
CALL FMMULCTMULTNT) s VoNDODyNNT,1, X{NND+1))

?
1 RTTUSN i
f C ENG SUBROUTINE XFIT

¢ END

A AR IS W T RTYeS A h T

Loy

SUBROUTINF URPI(RKX I RKZ+CrDYoXisX1oU yUL)
3 3 COMMCN/ZVREINL/NDIM,NDIML ,COML (1)
b 3 CIMMON/NDIMD/NNDyNADgNPOGNMD G NDD g NN IgNHOD NPL Dy NHPNHD ) NNPR
’ £ DIMINSION REX(LD oRKZ(1) sC(L) yDY (L)X (1) 9 Xi(2) U] UL(2)
g 1 CALL YOSNIXL4sUYsC DY, 4UL)
. ir CALL VSCALE(UL, UL \NRDy=1,)
‘ CALL MMULS(RKZ,ULJNRDJMrCed4U.)

( 00 12 I=1,NPLD
3 g 12 X, (I =X, (I)=XL (1)

CALL FMMULIRKX e Xu yNEDeNNDyi1,UL)

CALL VADCINRDy1,,U,U")

RTTUSN
C eMD SUBRAOUTINE URPI

€ND

s i el
STPPEY. ot

1 SUBROUTINZ UCGT (UL UL o XM 9 XML yDDIF 9 ZML s IUMyVUM,IT)
' COMMON/MATINL/NDIM,NDIML,COML (1)
E COMMON/NDIMD/NNODyNRDyNP Oy NMDyNDD 4 NHD 9 NWCD¢NPLD,y NWPNWD ) NNPR
COMMON/NCINC/NNC4NRCy NPC
COMMON/LOCC/LOHC,LBIC,LCCHLDC
COMMON/CMOMTX/NVYCHM,NERCM,NODC,CH (1)
COMMONZLREGPI /L XOW, L UDN s LPHCL o LKX 4L K2
COMMON/CFEGPI/NVRPILRPI (1)
{ COMMON/LCGT/LALL LAL3,LA2,4LA23,LA12,LA22,LKXAL1,LKXAL2,LKXALZ
f COMMON/CCGT/NVCGT,CGT (1)
‘ DIMENSION Us(1)sUd (1) XM (1) 4 XML (1) ,DCIF (L) ZML(1)
f CALL YCMD (X" 3T UM,VUM,C¥({LCC),CM(LOTY,H U")

¢ IF(IT.G6T.1) GO TO 1°
' ‘ ' I=LKXAL12+LADCRINPOy1,,TUNMI~1

CALL MADDL(NPDyisUL,COTIIDUL,VUM)
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1Y CALL MMULS(RPI(LKZ) 4U?¢NDINyNDIMy1,UL)
DO 12 I=1,NNC
12 XMICI)=XMLLI)=XMA (1)
CALL FMMULICGTILKXAL11) 9XM3oNFDoNNCs1,U2)
CALL VADDINIIMy1e,UL,U2)
IFINDDLERF) RETUIN
P DO 14 I=1,NDD :
& 14  D"IF(1)==CDIF(I) t
f
¢

CALL MMULS(CGT(LKXA13),COIF,sNPDyNDD,1,UL)
RETUSN

C TND SUBROUTINE UCGT ]
END

3 SUSFOUTINE YOSN(X,UeCyDsLDCGT,sY)
' COMMNON/VAINL/NDIMoNIIML COML (1)
COMMON/NDIMD/NND s NRDy NPDy NMD ¢NODy NWI, NWCDy NPL Oy NHPNWO, NNPR
COMMON/LOCCO/LAP JLGP g LPHIGJLBDJLEX oLPHD LQy.BNoLAD)LCoLOYZLEY LHP,LR
COMMON/DSNMTX/NVOM, NODY 4NOEY,OM (1)
[ DIMENSION XU4),U(1)4C(1)40(2),Y(21)
i NDIM=NOD
_ NDIML=NDI M+t
f CALL FMMULUCs XoNPDOyNND 1, Y)

IF(NO"Y.EQ.1) GO TO 17

CALL MM' S(DyUsNPDyNFDy1,Y)
it IFCILDCGFeEQe ) ¢ORe (NOSYLEQe 1)) KRETURN
1 CALL MMULS(DM(LEY) s X(NND#1) yNPDOyNDDy1,Y)

QTTUPN

B C END SUBROUTINE VDSN
. END

5y, e

;“f" n
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SUBROUTINE YCMO(XsIUyVULC,0,Y)
COMMON/MAINL/NDIM,NDIML,COML (1)
COMMON/NDIMC/NNC 4 NRC o NPC
COMMON/CMDMTX/NVCM, NEWNCM,NODC,CH (1)
DIMINSION X(1),C(1)4D(1),Y(1)
NDIM=NPC

NOIML=NDIMeg

CALL FMMUL(Cy Xy NPCyNNCy1,Y)
IFINODCsEQeL) RETURN
Li=zLADDR(NPCy1,IU)

CALL MATDI1(NPCy1,Y,D(LL)»Y,VU)
RZTURN

SU3ROUTINT YCMD

EMND
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SUBROUTINE FLTRK(IFLTR)
COMMON/MAINL/NDIM,NOIML,COML (L)
COMMON/MAIN2/COMZ (1)

COMMON/DE SIGN/NVCOMy TSAMPLFLRPIJLFLCGT JLFLXFoLTEVAL LABORT
COMMUN/ZFILES/KSAVE JKDATALKPLOTyKLISTHKTERNM
COMMON/SYSMTX/NVSM,SM L)

COMMON/ZZMTXL/NVZM,ZML (1)

COMMON/ZZMTX2/7ZM2( 1)
COMMON/NDOIMO/NNDy NROy NPDyNMO yND I NN NHII,NPLDy NWPNWDy NNPR
COMMON/ZLOCD/LAP J LGP ¢LPHI 4L B8O oLEX JLPHD 4 QoL ANy LQD L CyLOYSLEZYLHP,L:
COMMON/Z/DSNMTX/NVDOMy NCCYSNOEY DM (1)
COMMONZLKF/ZLEADSN,LFLTRK,LFCOV
COMMONZCKF/NVFLT,FLT (1)

IFINWPNWLGT, ) GO 1O 1§

WRITE(KTEFM,4:8)

FCIMAT (. NO DRIIVING NOISES = = FILTER JZSIGN ABORT™)
RITURN

If(NY3,GT.") GO TO 2

WP ITE(KTERM,179)

FORMAT (*“{ NO MEASUREMENTS = « FILTEZR DESIGN ABORT*™)
RTTURN

WRIITZ(KLIST,41")

FORIMATLZZ77700%5("% ") ,"FILTZF DESIGN™ (™ *)//77)
NSIZZ=NFLN® (1 eNPLO#NMT)

iFINSIZELLELNVFLY)Y GC TO 3

WEITZ 3" L4NSIZE

FAIMAT (™ INSUFFICIENT MIMOFY /CKF/y NZETH “,14)
LAJOFT=NSI2E

RETUCN

NTIM=NPLL

NOIMI=NDI Moy

IF(NWDL,EGLT) GO TO 12

IFCIFLTR<LESL) GO TO &

W2ITE 1°5S 4NN

FORMAT(* ENTZR STATZ NOISE STRENGTHSS *,Ic)

CALL RQAWGYS(OMILQ) ¢ NWT L)

CALL DVCTOP(NWNDDMILQ) 4ZM1)

CALL MATLST(ZML4NWD 1 "Q*",KTERY)

CALL MATLSTIDH(LQY yNWD,NWD,"Q",KLIST
IF(NWJO0.EQs%) GO TO 18

IF(IFLTRLLELL) GO TO 13

WSITE 176 4NWDD

FORMAT (™ ENTER DISTURBANCE NQISZ STRENGTHSY "e12)
CALL RQUWGTS(DM(LON) 4 NWDD,yL)

CALL DVCTOR(NADDOM(LQN) oZML )

CALL MATLSTUZML ¢ NWDD 1 ,"AN"s KTERM)

CaLL MATLST(DYMCLQAN) ¢ NWDDyNWDOs"AN"¢KLIST)

CALL QOSCPTI(DMILQ) o DMAILAON) ZM1,7M2)

IFCIFLTRLEL.) GO TO 19

WRITE 377 ,4,N4D .

FORMAT ("™ ENTER MZASURFMINT NCISE STRINGTHST *,12)
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CALL ROWGTSIDA(LRY oNHD," )

€9  GALL DVCTORCNMD,DM(LR),ZM1)
CALL MATLST(ZML yNMDy1,%R"yKTERM)

20 CALL MATLST(OM(LR) s N¥DoN4Ds=R™yKLIST)

25  CALL TFRMTX(DMILHP) 4SM, NMDyNDIM, 2)
CALL TRANEZ(NYD,NOIMsSM,ZM1)
LFCOV=LFL TRK4NDT M*NMD
CALL DVCTOR(NMD,OMILR) oFLT (LFCOV))
CALL KFLTRUNGIMeNNDsFLT +ZM1sDMILQD) «FLT CLFCOV) »ZH2,

£ FLT(LFLTFK) o SM) ‘

CALL TFRMTX(SM,COMZ o NDIMyNDI4o2)
ra=q |
20 3: I=i,NPLOD |
FLT(LFCOV=1+1)=SQRT (ZM2 (IA))

3% IA=IA+NDIML
CALL MATLST(FLT (LFLTRK) ¢NOIM+NMD oy KF=oKLIST)
CALL MATLST(FLT (LFLTRK) ¢NOIMyNUD o =KF ™=y KTZkM)
IFLTR=1
LFLKF=1

111 FARMAT(AT)
R™TUPN

C END SUSROUTIN: FLTRK
ZND




SUBROUTINE FEVAL

COMMON/MAINL/NDIM,NDIML,COML (L)

COMMON/MAIN2/COME (1)

COMMON/INOU/KIN, KOUT,KPUNCH

' COMMON/D= SIGN/NVCIM,TSAMPLFLRPILFLCGT JLFLKF LTEVAL 4L ABORT
S COMMON/FILES/KSAVEyKDATA4KPLOTsKLISTHKTERN

COMMON/SY SHTX/NVSM, SM(1)

COMMCN/ZMYXL/NVYZM,ZML (1)

COMMONZZMTX2/ZM2(1)
COMMON/NDIMD/NNTyNRDyNPDyNMD g NDD o NWC o NWED9yNPLD s NWPNHCy NNPR
COMMON/LOCD/LAP JLGP o LPHI s LBDyLEXSLPHDGLQyLANyLQDoLCo i DY LEY,LHP,yL?
COMMCN/DSNMTX/NVDM,NODY ,NOEY ,CM(1)
COMMCN/NDIMT/NNT o NRT o NMT o NWT
COMMON/LOCT/LPHT ¢LBOT yLQOTsLHT LRT9LTCTLINT
COMMON/TRUMTX/NVTM, TN (1)

COMMONZLKF/LEADSN,LFLTIRK,LFCOV

COMMON/ZCKFZNVFLTLFLT (L)

DIMINSION ITITLE(5) 4NS(3),NVPLOT(2)

IFINWT4GT.i) GO TO

q—a

& ,
Rt e Bl e Ll H

SR

-
WW m AN,

WEITE(KTERM,178)
148 FORMAT (" NO TRUTH MODEL ORIVING NOISE = = FILTEZR EVALUATION ABOXTC
19™)
: RTTUEN
] 1 WEITZ(KLIST,110)

147 FORMAT(///7/741%,5(™* =) ,"FILTER SVALUATION"yS (" **)////)
CALL FMMUL(COM2,FLT(LEACSN) ¢ NPLDyNPLD NPLIySM)
CALL POLFS(SMyNPLD,5,7ZMi42ZM2)
. NA=NNT +NPLD
t NSIZZ=NA®NA
! IF(NSIZZ.LE,NVSM) GO YO 8
! WRITE 4731 ,NSIZE
41 111 FORMAT("f INSUFFICIENT MIMORY /SYSMTX/, NccDt *,1I6)
' f 60 10 9
| IF(NSIZELLELNVZM) GO TO 1)
| W=ITE 17 3,NSIZZ
FIRMAT (7 INSUFFICIENT MEMORY /ZMTYX1/,/7ZMTX2/7, NEELCE *,14)
LABOST=NS12Z
RITUeN
1" CALL ZPAFTISM,4,NSIZE,1)
NCIM=NPLD
NCIML=NDIMe4
CALL TFRMTX(TMILRT) yZM14NMDyNMD, 2)
CALL MATS(NPLOyNMO,FLTU(LFLTRK) yZM3oCOM1)
NVOUT=2*NPLD¢1
REWIND KPLOT
CALL DACOVISMFLT(LFCOV)sZM1 4ZM2 4NAJNVOUT,L )
DO 2v IT=1,5{
TIME=TSAMFSFLOAT(IT)
CALL ACOVUDISM,TM(LQDT) ,COML , TMILPHT) 4FLT(LEADSN),
‘ ' 1 COM2,2ZM1,ZM2)
CALL OACOVI(SM,FLT(LFCCV) 3ZM1 4ZM2 4NA 4 NVOUT,TIME)

[+

O -
E%e 3
(]

& TR ikl
- — Y~ Y\

C e ————— . T
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2"  CONTINUT

ENDFILE KPLOT

WRITE(KTEPM,116)

READ(KIN,422) ITITLE

DO Su I=1,NPLD

REWIND KPLOT

NS(1)=1

NS(2)=52

NS(3)=173

NVPLOT (L) =T+I=t

NVPLOT (2) =141

I L1 J=5,54

CALL RPLOTF(ZML,NVOUT,IERR)
P IF(IZRReEOs1) GO TO 57
¢ CALL STRPLTISMyZMI,NSWNVPLOT2,NVOUT)

NnY 35 K=41,3
35  NSIK)=NS(K) ¢4
47  CONTINUE
: WRITS 4357 9ZMLINVPLOT(1)) 41 ,ZML(NVPLOT(Z))
: 1°7 FCRMAT(“{FINAL RMS SRRORS t TRUE = “,1Pil1se7/% (STATi™,I7,

1 ")=,4X,"COMPUTED = *,1P515.,7)

CALL PLOTLP(5142,SMy=1,143KLIST,ITITLE)
: N;IT;(KLIST,iQG’ I

17F FORMAT(™f  STATE 1 =,I12//4X,"SYM30L i1 t TRUE SRROR™/

{ 1 LX,"SYMROL z 8 COMPUTLD ERRQR */)
5%  CONTINUZ

RITUZN |
' 1%L FORMAT(™ 4%,1,("=")," ENTER TITLE IN GIViiw FIELD 41’ (™="),"¢"/) ﬂ

S pemmre e v W ~-

N e

172 FORMAT(5AL")
’ C END SUBROUTINT FEVAL
3 END

4 t SURROUTINE DACOV(PCA,PC,ZM1,ZM2,NA, NVOUT, TIME)
f . CAMMON/MATINL/NDIM,NDI¥1,COML(1)
S COMMON/FILES/ KSAVI o KDATA KPLOT JKLIST,KTERM
'Qq : COMMON/NDIMO/NND g NRD oy NP Lo NMDNDO g NWOoNWDO 4 NPL Oy NNPNNDy NNPR
> ! COMMON/NCIMT/NNT4NRT o NMT(NWT
vy COMMON/ZLOCT/LPHT 4L BOTLQOToLHT LRT,LTOT,LINT
[ COMMON/ZTRUMTX/NVTM,TM(1)
DIMENSION PCALL) 4PC 1) 4ZML(1)42ZM2(L)
{ NDIM=NA
NDIML=NDIMs1
. CALL TFRMTIX(TM(LTOT) 4 ZM1,NND4NNT,2)
: IFI(NOD.LT.1) GO TO 5
: IQ’LAODO‘NA’NND§1’1’
3 ' CALL TFRMTX(TM(LTNTY yZML(IAY ¢4NDD,NNT,2)
, . 5 CALL SCALE(ZML,ZMiys NPLD4NNT9=1.)

214




TS L v i N. AT e e R I _ - I ——— e ————em e Se T ————
A N I - oy P s e PaA-ear eup T A - : 1
\
o
& 1
- b
1

JASLANDRINA,LJNNT 1)
CALL IONT(NPLD,ZMi(IA),4,)
CALL MATI(NPLDyNA,2ZM1,PCA,ZM2)
NRITEIKLIST,131) TIME

404 FORMAT (™ *TRUZ? DESIGN ERROR COVARIANCE AT TIME = “yFbek)
CBLL MATIOUZM2,NPLD4NPLD,3)
Ia=]
J0 1+ I=1,NPLD
NS=I+1
ZML (NS=1) =SQRT(ZM2(IA))
ZMLINS)=PC(])

1" IA=IA+NDI M

ZMLINVOUT)I=TIME
CALL WPLOTF(ZML,NVOUT)
RETURN

C END SUBROUTINE DACOV
€Np

P T g mr—p——--

T a2 Eaaadid

- aw

SUSROUTINE ACOVUDIPT QD RKRKT4PHITsPHIZRIMKH 42M41,242)
] COMMON/MAINL/NDIMy,NDIML,COML(Y)
‘ s COMMON/NDIMD/NNDy NRD ¢ NPCoNMDyNDD o NHIyNWTD9yNPLD o NWPNWDy NNPF
COMMON/ZNDIMT/NNT o NET o NMT, NUHT

COMMON/LOCT/LPHT LBOT,,LAOTsLHTLRTHLTOTHLINT
COMMON/TRUMTX/NVTM,TM (1)

COMMON/ZLKF/LEADSN,,LFLTRK,LFCCV

COMMON/CKF/ZNVFLT,FLT (1)

DIMINSION PC(1),QD(1) ,RKRKT(L) yOPHIT(1)4PHI(L) JRIMKH(Z),
i ZMi(1),2M2(1)

L1i=LAJDOR(NOIM,1 4 NNT+1)

CALL ZPARTIZM2(L1) 4NNTLNPLO,NDIM)

CALL TFFMTX(PHIT ¢ ZM2 yNNTyNNT,2)
. Li=LADDP (NDIMy NNT+4 o NNT+1)
| CALL TFEMTX(PHI+ZM2(LL) 4NPLDOJNPLD,2)
' L2=LADDRINDIMaNNT#+,L,1)

COLL ZPART(ZM2(L2) ) NPLOsNNToNDIM)

CALL MATZ(NOIMyNDIM,ZM2,PCysZM1)
CALL FPADD(ZMLsNDIM9QCoNNToNNT+14PC)
CALL IONTUNNT,ZMcZy1e)
i CALL FMMULCFLT(LFLTRK) s TM(LHT) yNPLGyNMDoNNT4ZM1)
CALL TFRMTIX(ZML,Z42(L2) +NPLDyNNT42)
CALL TFOMTX(RIMKH,ZM2(L1) NPLDyNPLD,2)
CALL MATZT(NDIM,NDIM,ZM2,PCyZM1)
’ CALL FPADNDIZML,NDIM,RKRKT 4 NPLDyNPLD,L1,PC) :
A RETURN i
' C ©ND SUBROUTINE ACOVUD '

€ND

T T e
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C END

SUSROUTINE FPADD(XeNX Y NRY,NCY,LADNR,Z)
DIMNINSION X(1)9Z (1), YINRY,NCY)
CALL FTMTX(XyZyNXyNX)

LaMi=L ADDR=1

D0 17 I=g1,NCY
LAL=LAMLeNX®(I=1)

DO 4 JI=1,NRY

LAi=LAleg

ZILAY)=Z(LALY+Y (J,I)

RITURN

SUBROUTINE FPADD

END

216

Rt A

-~ -




P RN P N S P " v 7

T P

1t.

ir1

ir
ite

114

2l
2l

22

SUBROUTINE RSYS(A,LsND,ITYPZ,IHRT)

COMMON/DE SIGN/NVCOMoTSAMP, LFLRPI LFLCGT o LFLKF o LTCVAL oL ASORT
COMMON/FILES/KSAVE,KOATA,KPLOT,KLIST,KTERM

COMMON/SY SHTX/NVSH, SM (1)

DIMSNSICN A€1)4L (L) JNB(1) oNAD (L4 +2) sIND (7,30 NTYP (2, 30 o NTITLE(3) ,
4 NMAT(14,7)

BATA NTYP/T58lysSoielesB/

DATA NO7LHN/

DATA IND/IHNy LHF o 1HP o 4HM, 1HD , LH Ny ZHNWD o ZHNMs CHR M 2HPY ok (1H )4

L 2HNT, 2HRTo2HNT o 2HWT o 4H o 1H J4H 7

DATA NTITLE/6MIESIGN,7HCOMMAND s5HTRUTH/

DATA NMAT/LHA,LHBy2ZHEX s 4HG 21 HO s LHCy ZHOY » 2HEY o L HHy 2 HHNy LHR o 2HAN
1 2HGNy 2HON92HAM s ZHBM g 2HCM ¢ 2HOM 10 (4 H 39 ZHAT » 2HBT o ZHGT o 2HAT4 2 HHT,
2 2HIT,3HTOT,IHTNT,E(4H )/

NOMZNTYP(1,ITYPE)

NAR=NTYP(Z,ITYPE)

NYSNTITLE (ITYRZ)

WIITZ(KLIST,41%) NT |
FORMATAZZ7/L1Xs5 (™% ) A7 3™ MODZL™y5(™ %) /777) |
WIITE 17 1,NT :
FARMAT (" READ “,A7,™ MODSL FROM *DATA’ FILE (Y 0% N) >*)
RT8D 111, TANS

IFCIENSSEO.NO) GO TO 4°

IF=1

CALL REATFS(AsND,ITYPE, IERR)

IF(IZRR.E0.L) GO TO 274 ;
WIITE 172 NT !

FARMAT (" ENTER *9A7,4° MODEL FROM TERMINAL (Y OR N) >*™)
RZAC 141,IANS

IF(IANS,EQ.NO) GO TO 45

IF=2

02 12 I=1,NOM

WRITZ L21C+IND(ILZITYDE)

FORMAT (™ ENTER *4424* >*)

READ* ,NC(I)

62 70 272

IF=3

IF(ITYPE«2) 16,417,189

CALL DSNO (ND)

G2 T 27 j
CALL CMDD (ND)

G0 TO 2"

CALL TRTHN(ND)

IFI(ND(L).GT () GO YO 202

WRITE L14,NT

FORMAT (™! “9A7 4" MODcl SUBROUTINZ NON=EXISIZNT*™)
60 Y0 5

IF(ITYPE=2) 21422423

CaLL CSNDMIND,NAD)

GO T0 2%

CALL CMDDMIND,NADY
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GO TO 25

CALL TRTHCMINC, NAD)

IF(LABORT EQes) GO TO 26

WRITE 47 3,NT,LABORT

FORMAT (. INSUFFICIENT McMORY FOR *,A7,"™ MODIL, NZtDt ", 14)
RETURN

L(1)=

N0 3. I=Z,NAR

LII)=L (I=1)eNAD(I=1+1)%NAD(I~1,2)
NPNTS=L(NAR)¢NAD(NAR, 1) ®NAD(NAR,2) =1
IFINPNTSOLE«NVSM) GO TO 34

WRITE 4176 NPNTS

FORMAT ('t INSUFFICIENT MIMORY /SYSMTX/, NZZD1 *,I4)
LABIORT=NPNTS

RETUSN

IF(IF=2) 75,35,5L

12=4

00 4. I=1,NAR

Ni=N&D(I,1)

N2=NAD(I,2)

IFLANLeE04) eORGIN2,ECL()) GO TO !

WRITE 4143 ,NMAT(IL,ITYPE)

FOIMAT (L NTER *,A3)

CALL ZMATINCACLCI)) oN1sN2,127)

CINTINUZS

GO TD 7%

CALL ZPAFT(A,1sNPNTS,1)

IFLITYPL=2) 55,6",65

CALL ODSNMGACLIL)I I JATLI2)) JALL (I ) JALLIQI)ZALL(B)) JALLIE)) JALL(7)),
L ACLUBI) JACLEINI DI JACLIL ) D AL (L)AL (L2)),ALLIL2))ALLLLN)))
69 10 75

CALL CHMOM AL (LI ZALLIZS)) JALLI3)) JA(L(S)))
G0 7O 75

Cale TRTHMEACL(L))JAMLE2))yAILI3))ACL(LY)LALL(S)) B (L(5) ),
1 A(LE7TDYLALLL(8)))

17="

LED & F I -1

FORIMBAT (" “ODIFY MATRIX ELEMENTS (Y OR N) >*)
RZAD 111, IANS

IF(IANS.EQ.NO) GO TO 9

HRITT 476, (NMAT(ILITYPE) I=19NAR)

FORMAT(AX 414(2XAT))

WRITE 177

FORMAT (™ ENTER MATRIX NAME >*)

RTAD 114,IANS

D0 87 I=1,NAR

IF(IANS.EQeNMAT(ILITYPE)) GO TO 8%

CONTINUE

G0 TO 78

W2ITE 44€

FORMAT(*™ LIST MATRIX TO TERMINAL (Y 0% N) >*%)
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RZAD 111,IANS
IFUIANS.ENNO) GO TO &3
CALL MATLST(ACL(IN) yNAD(I91) 9NAD(I22) ¢NMATU(IZITYPE) JKTERM)

83 CALL ZMATINCACLCI)) yNAD(IZ4) 4NADI(IL2),12)
G2 TO 77
IFCINRT) 95,92,93
! 92 IWRT=1

93 WEITE 145 4NT
115 FORMAT(“CURITZ *4A7,+* MODZL TO °*SAVE® FILE (Y OR N) »*)
RTAD 111, IANS

R R R e o
P9

i IF{IANS,EOQNO) GO TO 95

é CALL WFILED(ITYPC yNPNTSIND,LA)

¢ INRT=-1

: W2ITE 1r g, NT

; 1°9 FORMAT(EX AT, MODEL WRITTEZEN TO *SAVE® FI.LE*™)

95 DO 1J. I=2,NAR
N1=NAD(T,1)
N2=NAD(I,2)
IFUINLeEDet) sOR G (N2,EDL")) GO TO il
] CALL MATLSTCACL(I)) ¢NLyN2yNMAT(I,ITVPE) ,KLIST)
: 11, CONTINUZ
111 FORMAT(A3)
' RETURN
E C IND SUBRNUTINE RSYS
END

Caliran i 2R

M M

WIS “JUIP™

SUBRCUTINE DSND(ND)
! OIMZNSION NO(Y)

; ND(1)=5
E RETUSN
; ! C END SUBROUTINT DSND
- 3 i END
-
“Zi . [
1
1 |
!
! {
bR
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END
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SU3BROUTINE CMIDI(ND)
OIMENSION ND(1)
ND(1)=¢

RETURN

SUBROUTINE CM2D
END

SUBROUTINE TRTHO(ND)
DIMENSION ND(3)
N2(L)="

RETUSN

SUBROUTINE TRTHD
END

SUBROUTINE DSNMUA,ByIX9GyQeCyDY4EY4HyHI,R,4D,62,00)
RITU2N

SUBROUTINE DBSNM

END

SUBRCUTINZI CMIM(AM,8M,CM,DM)
RTTUSN

SUBRQUTINE CMDM

END
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SUSROUTINE TRTHMCAT ,BT,GTsQToHT4RT, TDT, TNT)
RZTUON
* C END SUBROUTINE TRTHM

END

SUBRNUTINS DSNDMIND,NAD)

COMMON/DE SIGN/NVCOMy TSAMP ,LFLRPIJLFLCGT LFLKF yLTEVAL yLASORT
COMMON/NOTMI/NNOoN2D s NPCyNMD 4y NOD 9 NWDo NWEDS o NPL Ly NHPNWD, NNPR
COMMON/DSNMTX/NVIM, NOOY,NOEY,0M(1)

DIMINSION NDU(1) yNAD (I L,2)

NND=ND (1)

NRD=N[(2)

NPD=ND(?)

NMD=ND (&)

N2D=ND {5)

s NWO=NC(6)

! , NWDD=ND(7)

g NPLO=NND+NDD

¥ NWPNWD=NWD+NNID

NNPR=NKD+NRD

g \ N2D(1,1)=NKD

t { NAD(2,1) =NND

' : NAD(3,1)=NND

. ] NAD(4,1)=NND

. agroge ey

- . e

. NEDI5,4)=NWD
» 1 NaD(6,1)=NPD
4 ] NAD(7,1)=NPD
& NAD(5,1)=NFD

i NAD(©,1)=NND
; NAD(Lu 91 ) =NMD
NEDCL1L41) =NMD
NAD(4244) =NDD
NAD(L3,1)=NOD
NADIi4 1) =NWDD
NAD (1, 2)=NND
NAD(2,2)=NRD
NAD(?,2)=NDD
NAD (4, 2) =NWD
NAD (5, 2)=NWD
NAD(&,2) =NND
NAD(7,2)=N&D
NBADI3,2)=NDD
NAD (9, 2)=NND
NAD(L" 42) =NDD
NAD(14,42)=NND
NAD(12,2)=NDC
NAD(13,2) =NWDD
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; NAD(14,2) =NWODD
NSIZE=NPL C*(Z*NPLOD#NND+NMO+NPD+IWPNHD) +NRD® (NND#NPD) ¢
1 t 1 NDD*NOD¢NMD*NMO+NWO*NWI+NWOD*NW DD
¥ IF(NSIZE,GT.NVDOM) LABORT=NSIZE
E : RIZTURN
{

-~

C END SUBROUTINE DSNDM
END

SUBROUTINE CMDIOMIND,N2D)
COMMON/NDTMC/NNCyNRC4N2C
. COMMON/CMTUMTX/NVECMe NTWCMyNIZCHyCM (1)
Lk COMMON/DESIGN/NVCOM, TSAMPLFLRPI LFLCGT JLFLKF,LTEVALLA3ORT
Ff DIMINSICN NI(L)4NAD(L14,2)
. F NNC=MD (1)
ot NTC=NC(2)
E ] NeC=MD(3)
: NAD(2,1)=NNC
3 NAD(241)=NNC
T ¢ NAD (2,1)=NPC
NAO (&4 1) =NPC
1k NAD (1, 2)=NNC
1 NAD (2, 2) =NRC
3 1 NAD(3,2)2NNC
2 NAD (L4 2) =NFC
A NSIZT=NNC*(NNC+NRC+NPC) +NPC*NRC
b E IF(NSIZZ.GT4NVCM) LABORT=NSIZE
- RITUSN
C END SUBRQUTINE CMODM
END

Ny AP N~ SIS e e
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SUBROUTINE TRTHOMIND,NAD)
COMMON/DE SIGN/NVCOM, TSAMP LFLRPI,LFLCGT yLFLKF4LTEVAL »L ABORT
COMMON/NDIMI/NND o NRDyNP Dy NMDy NDD o NWDoNHED yNPL Dy NWPNWD o NNPR
COMNON/NDIMT/NNT JNRT o NMT o NHT
COMMON/TPUMTX/NVTN, TM (L)
DIMENSION ND(1) 4NAD(L4,2)
- NNT=ND (1)
NRT=ND (2)
NMT=ND(3)
NHT=MND (&)
NAD(1,4)=NNT
NAD(2,4) =NNT
NED(?,1) =NNT
NAD(4,1) =NWT
NAD(5,1)=NMT
NAD (6, 2) =NMT
NAD (7 ,1)=NND
NAD(8,1)=ND)
NaD(1,2)=NNT
NAD(2,2)=NPT
NAD(3,2)=NNWT
NAD (&, 2) = NWT
NAD(5,2)=NNT
NAD(6,2)=NMT
| 1 N&D(7,2)=NNT

: NAD (3,2)=NNT
NSIZE=ANT*(2*NNT+NMO+NRT+NPL D) ¢NMC®AMD
3 IF(NSIZZ.GToNVTM) LABORT=NSIZE

RTTUEN
C ENC SUBROUTINT TRTHOM
END

e o At e rer

SYAROUTINE ZMATIN(ASNRGNC,I2Z)
DIMENSION A(NR,NC)
I€(17) 4C,4u91
1 D0 5 I=i,NR
DO 5 J=1,NC
5 AT J)=D,
g1t 13 WRITE 401,NR,NC
E ] { 15 RTAD*,1,J,V
3 IFUI.EQs") RETURN
IF((TI4LZ«NR),ANDo {JeLELNC)) GO TO 2.
% WRITE 192
, 2% A(I,J)=v
] ' IF(IZLTe!) ACII)=V
- : GO0 TO 15
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111 FORMAT(™ ENTER 1l4J AND MUIgJ)==(0/ WHIN COMPLETZ) ¢ *I2,” BY "I2,
1 = >»)

102
C END

1.1
12
C END

FORMAT (" ERROR IN ARRAY INDEX™)
SUBROUTINE ZMATIN
END

SUBRCOUTINZ WFILED(NT#NP,ND,A)
COMMON/FILES/KSAVE +KDATAKPLOTyKLIST,KTERH
DIMENSICN ND(1L) 4A(NP)

OATA IcE0l/~4/

BACKSPACZ KSAVE
WRITS(KSAVEZ17L) NT,NP
WRITE(KSAVE.1Y2)Y (INDUI) 4I=4,1))
WRITE(KSAVZ132) (2LIV41I=1,4NP)
WIITZ(KSAVEs121) IEOILNP
RTTUON

FORMAT (214)

FORMAT (Eci o11)

SUBROUTINE WFILED

END

SUBROUTINE READFSUA,NDsNT,IZRF)
COMMON/ZFILES/KSAVE yKDATAGKPLOT 4KLISToKTZRM
DIMINSION AlL)NDIAT)

DATA 1E0I/-y/

RIWIND KDATA

READ(KDATA,172) IT,NP

IF(IT«NELIEQI) GO TO 1

WeITE 171

IT]2=1

RETUBN

CALL FARRAY{AJNDNP)

IF(ITJNE«NT) GO TO 5

IZRR=2

FORMAT (*( CATA NOT IN *DATA® FILZ o o o)
FORMAT (214)

RETURN

SUBROUTINE REAODFS

END
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SUBROUTINE FARRAY(A,NDyNP)
COMMON/FILES/KSAVE ¢ KDATA,KPLOT+KLIST,KTERM
DIMENSION A(NP) ,ND(1")
RFAD(KDATAAT L) (NDCI)oI=1,4()
RZADIKDATAL102) (A(I) o I=14NP)
RETURN

1731 FORMAT(21I4)

172 FORMAT(E2C,,1!)

C END SUBROUTINE FARRAY

END

> e e > W c———

R et LY, o]

SUBROUTINE TFRMTX(X1,X2,NRsNC,ITX)
» COMMOM/MAINL/NOIM
: DTMENSION X1(1),X2(1)
3 IF(ITX,50,2) GO TO 2:
4 J=NC*NCIM
s K=
D0 1F I=1,J,NDIM
L=IeNz et
DO 1™ Ju=1,L
KK=KK+3
. 1. X (KK)=X2 (JJ)
4 RETUEN
2" KK=NR*NC+1
B DO 3" I=1,NC
'k L=(NC<I)*NOIM+i

4 DO 37 J=1,NR

KK=KK=1
JISL+NR=YJ

z X2 (J3J) =YL (KK)
, RTTURN

Camaad N oo

SR Ll
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SUBROUTINE MATLST(ANRyNCsNT4KDEV)
DIMENSION A(NR,NC)

HIITEC(KDEV.LL 1) NT

DO 17 I=1,NR

WFITE(KDEV,aL2) (A(I4J)4sJ=1,yNC)
FORMAT (LHZ 9A3 y™ MATRIX™/)

FCRMAT (1X1P4is G134

RITURN

SUAROUTINE MATLST

END

SUBROUTINE NDSCRT(A,NyNTERMS)

CNMMON/DE SIGN/NVCOMTSAMP LFLRPILLFLCGT o LFLKFoLTEVAL 4L ABORT
DIMENSION A(2)

NTZRUS=IFIX(E.+3*TSAMP*XNORM(N,A))

IFINTZRMSeGTe Ju) NTERMS=3L

RETUFN

SUBRGUTINE NDSCRT

END

SUSROUTINE RQWGTS(W,NC,NP)

DIMSNSION W(1)

WEITE 174

FORMAT (" ENTER I AND OW(I,I)==("/ WHEN COMPLETE) >*)
RZAD*, I,V

IF(I.EQ.r) RETURN

IF(I.LELNC) GO TO 2°

WEITE 142

FORMAT (" FRROX IN ARPAY INDZX*™)

G0 10 i*

IF(V) 25,3047

WS ITE 473

FORMAT (™ ELEMZNTS MUST BE NON=NZGATIVZ*™)
GO Y0 15

IFC(NP) 35,47,35

WRITE 174

FORMAT (* ELEMZINTS MUSTY 8E POSITIVE™)
GO TO 15

Li=LAQORIND,I,1I

N(Li)=V

GO0 T0 15

SUYBROUTINE RQWGTS

END
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SUBROUTINZ DVCTOR(N,A,V)

DIMEINSICN A(1),V(1)

NPL1=Ned

N2zN*N

J="

P DO 4" I=14N2,NPQ
J=J+4

it vVisn=atl
RTTUEN

C ENC SUBROUTINE DVCTOR
END

PR r—p————-r=

-

RPN O ITIGEINS T S e e

SU3ROUTINE POLES(A,NyITYPE,ZM1,7M2)

CCMMON/MAINL/ND IMyNDINL,COML (1)

COMMON/DS SIGN/NVCOM, TSAMP 4 LFLRPI,LFLCGT 4 LFLKF,LTEVAL,LABORT

COMMON/FILES/KSAVZoKDATA,KPLOT4KLIST,KTERN

DIMENSICN NTYP(S) ,A(1),ZHL(1)4ZM2(1)

DATA NTYP/EHDESIGNy THCOMMAND s SHTRUTH,SHREGPI ¢ 6HFILTER/

. NDS=NDIM

k NDIM=N

| 3 NOIMI=NIIMs4

CALL EIGININDIMsA,ZM3,ZMLINDIML) 9ZMZ,")
IF(ITYPZ4LTel) GO TO 10
CALL MAPOLE(N,ZM1,ZM1(NCIML) ,TSAMP)

i: WRITE(KLIST,142) NTYPUITYPE)

C WoITE(KTEFMy192) NTYP(ITYPE)

. WRITZ(KLIST,424) (ZMLLI),ZMIINDIMeID), I=2,N)
WRITE(KTERMy1L1) (ZMILI),ZML(NDIM4I) 3124,N)
NOIM=NOS
NDIMI=NDTMed

171 FORMATUENAPEL5474" ¢J("41PE15,7,")")
172 FORMATU"(POLES OF “,A7," MATRIX™/)
RETUPN

C ©ND SUBROUTINE POLES

EnD

aa ko Atho. o) A
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C END

C END

1!’

C END

SUBROUTINS MAPOLE(NyZR,2I,T)
DIMENSION IRIL) 421(1)
RY=4,./7T

00 19 I=4,N
Z"'SOQT(ZR(I"'Z‘ZI(I"‘Z)
SIGMA=RT*ALOG(ZY)
ZI(I’=R7'ATﬂN2(ZI(I"ZR(I)’
ZRIT)=SIGMA

RETURN

SUBROUTINE MAPOLZ

£N9

FUNCTION LADOR(NR,I,J)
LADDR=I+NE# (J=1)
RITUPN

FUNCTION LADDR

v

SUBROUTINE FYMTXUX,Y,NR,NC)
ODIMENSION X(19,Y(1)
NE=NR*NC

D3 1, I=1,NE

Y(I)=x(1)

RTTUSN

SUBROUTINE FIMTX

M0
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, SUBROUTINE FMMUL (X, Y4NRL,NCL4NC2,2)
' DIMENSION XINRL,NCL)+YINCLsNC2) 9 ZINILHNC2)
t DOUBLE PRECISION TD
D0 1% I=1i,NRL
D0 19 J=1,NC2
TD=4,03"
D0 5 K=1,NCL
5 TO=TO¢X(I,K)I®Y(Ky D)
1 Z(1I,J)=T0
RETURN
C END SUBROUTINT FMMUL
£ND

e L o it e Y P Lo
. -
e LB A e £t e

SUBROUTINE FTMUL (X, Y osNRL,NC1¢NC242)
DIMINSION XUNRL,NCi),Y(NR14NC2) 9 Z(NCL,NC2)
~ DOUBLE PRECISION TD
3 DY 17 I=1,NCi
) DN 4" J=1,NC2
. 1 TD=JeC0
' 00 5 K=1,MRe
|} s TD=TO¢X(KIN®Y(K,y J)
17 Z(I,J)=TD

WHRST IR

; RZTURN

C ©ND SU3SROUTINE FTMUL
] £MD
:
3
2

| SUBKROUTINE FMADDIX,Y,NR,NC,2)
i 3 DIMINSION X(41),Y(1),2Z(1)
I | NS =NI*NC
-] D7 1¢ 1=1,NE
"3 4 ir ZCI)=XLI) +Y(I)
RCTUSN
C END SUSKOUTINT FMADD
END

R 21> ) T
‘nif'!s““'.""“
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SUBROUTINE ZPARTIASNRINC,ND)
DIMSNSION A(Y)
g NZ=NC*ND
= 00 47 I=14NR
3 DO 17 J=TI,NE,ND
p 14 AlJi=C,
RETURN
C END SURRCUTINE ZPART
END

- .

e -

vigen

R Lo

SUBROUTINE SURT (A4NRyND)

f OIMINSION 2(1)
E P ND1=ND+1
-t NE=NP*ND

DO 17 I=14NZ4NDYQ
b 8 A(l)=A(I)=1,
RZTURN
C EMND SUBRDUTINE SUBI
END

SUBROUTINE WPLOTF(V,4N)
COMMON/FILES/KSAVE,KDATA,KPLOT KLISTKTERM
DIMENSION V(N)
WRITE(KFLOT,121) (VII)yI=1,N)
RETUFN

1'1 FORMAT(ZZ2L.1%)

C END SUBROUTINE WPLOTF

END

T ST TR T IR PIITT T PRI STU IO D W
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SUSROUTINE RPLOTFIV,N,IZRR)
COMMON/FILES/KSAVZ s KDATAKPLOT KLIST,KTERM
DIMENSION VIN)
READIKPLOT 4T 1) (VII) yI=14N)
IF(EQF (KPLOT)) S,4"

IERR=)

RETURN

ITRR=?

RETURN

FORMAT(E2usil)

SU3ROUTINE RPLOTF

END

SUBROUTINT STRPLT(A,VyNSyNVyNPsNVO)
DIMENSION A(L),HS(LYJNVIL) ¥ (L)
AINS(LY)=V(NVO)

DO 3 I=t1 NP

AINS(I#+1))=sVINVIID)

KT TUFN

SUBROUTINE STRPLT

END

SUBROUTINE PLOTLP(NyMsA,IPSC,ISCL,LPTERM,NDZV,ITITLE)

S 8 3 & & 8 ¥ ¥

= NUMIE2 OPF POINTS TO B¢ PLOTTED

= NUMBE® OF OUTPUTS TO BT PLOTTED

= VZICTOR OF SAMPLI POINTS FOR PLOTTING t DIMENSION = N*M
ELEMENTS 1 TO N ARE THZ INDZPENDENT VARLABLE
SLEMENTS (N+1) TO 2%N, (2*N+1) TO 3*N, AND SO ON ARES
THE DIPENDENT VARIABLES--EACH VARIABLZ IS IN CONSECUTIVE
STORAGE WITH CORRESPONDING SAMPLE POINTS FOR E£ACH
SEPARATED BY MULTIPLES OF N

IPS = «4 => SCALE ALL VARIABLES TOGZTHER (4 PLOT)

% =» SCALE TOGETHER AND SZPARATELY (2 PLOTS)
+4 =» SCALE SZPARATEILY (4 PLOT)

1 => PLOT USING EVEN SCALING
= f => PLOT IS TO TERMINAL (57 CHAXACTERS WICE)
= 4 => PLOT IS TO LINE PRINTER (19" (HARACTERS WIODE)

ISCL = ) => PLOT OVER EXACT RANGE OF VARIABLE
=
M

NDEV = DEVICE NUMBER FOP PLOT OUTPUT
ITITLE = VECTOR(DIMINSICNZD 5) WITH 5° CHARACTER TITLE

L

L R IR NN INF JEE IR I J

DIMINSION YSCAL(60,YMIN(B) IBLNK(S) ,YPRIL,),A(L)

231
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INTEGER OUT(134) 4SYMBOL (6) ¢BLANK ¢PLUS GRIU,ITITLE(S)

DATA BLANKyPLUS,COLONSYMBOL Z71H oiH+s4HS o H19AH291H3 gaHis 9 1HE g1 HE/
1 FORMAT (4H )
2 FORMAT (1H1,11X,5A4%7)
| 10  FORMATILH ,F11,2+6X,1C1A1)
S 12 FORMAT (11K SCALE +A191Xy11F1M,4) ;
SRS IPAPER=E* (1+LPTZRM) '
: - ISPAC=4"*IPAPER

RISPAC=FL OAT(ISPAC)

ISPAC= ISPACH!

IPRTi=IPAPER+L

RMIN=A (N+1)

RMAX=RMIN
25 DO 41 ISC=i,M

Mi=ISC¥N+1

YL=SA(MY)

yusyL
3 M2=N® (ISC+4)

DC & J=M1,M2

IFC(ACJI)oLT,YL) GO TO 35

IFCACJ) «GToYH) YH=A(J)

GO TO &~
3% YL=A(D)
L*  CONTINUE
4 IF(YLoLT.RMIN)RMIN= YL

IF(YHeGTLRMAX) RMAX=YH

IFUIPSCeGEe?) CALL VARSCLAYL 3YH, YSCAL (ISC)4RISPAC,ISCL)
b1 YMINCISCI=YL

IFUIPSCeLEST)CALL VARSCL(RMIN,RMAX,SCAL »RISPAC, ISCL)
, 1C=2-1A48S (IPSC)
= D0 45 IX=1,ISPAC
Bl 45  OUT(IX)=BLANK :

i DO 1f; I1CO=1,IC |

WRITZANDEV,2) (ITITLE(I),I=1,5) !
D2 67 I=1,N :
XOPR=zA(T)
¢ || IF(MOD(I,1u)eEQeb) GO TO 456
g | GRIN=BLANK

GO TO &€
456 GRID=COLON
LbE( DO 461 IX=2,ISPAC,?2
461 OUT(IX)=GRID

DI 46 IX=1,ISPAC,1"
46  OUT(IX)=PLUS

DO 55 J=i,M

IL=I¢J*N

IFLIPSC) 4B,L47,4L9
47 IPSCT=IPSC+ICC
: IF(IPSCT.EQe2) GO TO &9
, 48 JP=2IFIXC(ACIL)=RMIN)/SCAL)+1
| GO TO 5°

-
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LA UL

49 JOIFIXIC(AIIL)I=YMIN(JI)IDI/ZYSCAL{Y)) +1
50 OUTWJIP)I=SYNBOL(J)
55 IBLNK(J)=JP
HRITE(NDPEV,,aT) XPRL(OUT(1IX),IX=1,1ISPAC)
00 59 J=1,M
ITEMP=IBLNK(J)
59 OUTC(ITEMP)=BLANK
67 CONTINUE
IFLIPSC) €8467,72
67 IFC(IPSCTe£Qe2) GO TO 72
&9 YPR (1) =RMIN
DO 7. I=1,IPAPIR
YPR{I+1)=YPR(I) +2124#SCAL
WRITE(NDEV,1Z) BLANK, (YPR(I),I=4,IPRT1)
GO Tn 174
72 DN 7€ ISC=i,M
YoR(1) =YMINIISC)
_ DO 7L I=%,IPAPER
Th4 YPRIT+1)=VYPR(I) +4.,*YSCAL(ISC)
75 WEITE (NDEV,12) SYMBOLC(ISC)(YPR(IX) 4IX=1,iPRT1)
1t WRITEZ(NDEV,.Y)
RTTUPN
C tND SUBROUTINE PLOTLP
; (3 )

—-a
[T

R i S 2 el R
~
P

TP

N Y

SU3ROUTINE VARSCL{XMIN, XMAX,SCALE,RSPACZ,ISCL)

- IF (XMAXe EQaXMIN) XMIN=,9*XMIN~11,

- SCALS= XMA X=XNIN

N IFLISCL.EDL?) GO TO 25

I | EYP=IFIX(400e+ALOGLIC (SCALE) V=1l

FACTOR=4r **#(L,=EXP)

i XMINT=XMIN®FACTOR

- XMAXT= XMAX*FACTOR

1 IF(XMAXT o GEol o) XMAXT=XMAXT+,9
IF(XMINToLEe" o) XMINT=XMINT=.9
XMINT=AINTIXMINT)
ISCAL=XMAXT=XMINT
IF(MOD (ISCAL+5) s NEo™) ISCAL=ISCAL+5-MOD(ISCAL+5)
FACTOR=24r (*3( EXP=1,)
XMIN=XMINT*FACT OR
SCALF=FACTOR®FLOATIISCAL)

25 SCALE=SCALE/RSPACE
RETUSN

C END SUBROUTINE VARSCL

: END

‘o :&f* -mu:xi ‘,'t "'

. — il
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Appendix E

.y —— e

N CGTPIF Segmentation Job Control

The following listing shows the job control com-

mands and segmentation directives used in obtaining a

PPN IV N AN

segmented object file suitable for interactive execution

Vv o

on the CDC CYBER computer system. The job employs three

object files: "L", "S", and "A". The routines on each of

N W TR

these files are (see the program description and listing
3 ] of Appendices A and D, respectively),

"L": 'MAIN' and all optional routines ('MAIN' through
'TBLUP1')

nsn

'CGTPIF SUBS' ('CGTXQ' through 'VARSCL')

"A": 'LIBRARY'

Object files L and S are loaded into memory in order of
MAIN then CGTPIF SUBS. The "NOGO" command then corpletes

the load from LIBRARY and system routines in order, but

Y TR, - YR SPYTW (VNS A o bvy

does not initiate execution. Next, the segmentation

\
Sl . o e

directives are executed (segmentation directives appear

between the pair of "*EOR" lines). Wwhen segmentation is

T e D ST, |
' P (OO !”.0 Tev PN,
. — el ; L. IVESN

F complete, the resulting object file is cataloged.

In this listing, the names given the various object

files ("L", "S", "A") are arbitrary, and the "ATTACH"
commands may occur in any order. The file name ("1£fn")

‘ given in the "LIBRARY, 1£fn" command must correspond to the
234




R e e

NIV FPUPEPOITs- eories?

name used in attaching the object file of 'LIBRARY'
routines ("A"” in this case). The name given to the seg-
mented object file is arbitrary ("CGTPIF" in this case)

but must be consistent in the "REQUEST", "SEGLOAD", and

"CATALOG" commands. The segmentation directives should
not be modified in any way.

As done in this case, it is convenient to maintain
distinct object files for each of the three sets of
routines. Thus both 'CGTPIF SUBS' and 'LIBRARY' remain
invariant in object and LIBRARY object files, respectively.
The routine 'MAIN' and any desired user-provided optional
routines may then be developed as an independent set, and
compiled to obtain the needed object file. Descriptions of
'‘MAIN' and optional routines are given in the "Programmer's

Guide" (Appendix A).




TR e T R

R4F. D790477, FLOYD
MAP. PULL.

hi & .
T NP O T w—————

i ATTACH, L, SEGAENT, CY=10.
3 ATTACIH, S, FLOYDL1, CY=10.
ATTACH, A, FLOYDL1, CY=1.
' LIBRARY, A.
i REQUEST, CGTPIF, *PF.
SEGLOAD(B=CGTPIF)
3 ; Loap(L, s)
- { NOGO.
2 ; CATALOG, CGTPIF, T{ESIS, CY=100, RP=130, PW=R 1F.
r *SOR
. i SETUP  INCLUDE DSCRT
] i SREGPI INCLUDE RQWGTS,MLINEQ, FACTOR
¢ FLTRK  INCLUDE RQWGTS, KFLTR,MLINEQ, FACTOR, INTLG
C STRTH  INCLUDE DSCRTT, INTEG
1 y SDSN INCLUDE QUSCRT
i CtVAL  IWCLUDE PLOTLP, VARSCL, RPLOTF, WwPLOTF, STRPLT
E FEVAL  INCLUDE PLOTLP, VARSCL, RPLOTF, WPLOI'F, STRPLT, DACOV
- t Bl TREE SETUP=-(SDSN, SCMD, STRTI)
B2 TREE PIMTX
. E B3 TREE SREGP1
1 B4 TREE SCGT
. B5 TREE CEVAL
; Bo TREE FLTRK
R ¢ B7 TREE FEVAL
o A TREE CGTXu-(Bl, 32,83, B4, B5, B6, B7)
: ROOT TREE JAIN=-A

{

- ) GLOBAL MAINI1,4AIN2, INOU, DESIGN, FILES, SYSMTX, ZMTX1, ZMTA2,
| , NDI4D, LOCD, DSNITX, NDI4C, LOCC, CADITX, NDIAT, LOCT, TRUATX, LCNTRL, CONTROL,
’ , LREGPI, CREGPI, LCGT, CCGT, LKF, CKF
| ; END

k| *EOR

) *OF
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